Resonances of 25,26F Atomic Nuclei

Matthew Tuttle-Timm
Augustana College, Rock Island Illinois
Resonances of 25,26F Atomic Nuclei

M. Tuttle-Timm, N. Frank, Augustana College, MONA COLLABORATION

Overview

- National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU)
- Facility uses two particle accelerators called cyclotrons which produces many radioactive isotopes
- The isotopes are separated by a magnetic fragment separator
- The beam is then directed into a target where collisions cause reactions within the nucleus.

Isotope Separation

- Time-of-flight (ToF) is the time it takes the charged fragment to get from the target to the fragment detectors.
- The energy loss separates the elements and is proportional to Z^2 where Z is the number of protons in the nucleus.
- Adjusting the ToF based on charged particle trajectories results in isotope separation.
- Nuclides generated from our secondary beam based on their adjusted ToF and energy loss is shown below.

Neutron Detection

- Neutron Time-of-Flight (27F):
 - Neutron Time-of-Flight is the time it takes the neutron to get from the target to MONA and USA.
 - This is timed right before the liquid deuterium target to the MONA-LISA detectors.
 - First peak is an interaction with the detectors and Gamma-rays.

Simulation Overlay

- Edecay of 25F with simulation overlay:
 - The three simulation peaks are (red line) 375 MeV peak with a 2 MeV width, (pink line) 1.0 MeV peak with a 6 MeV width, and (blue line) 3.0 MeV peak with a 2.0 MeV width.
- Edecay of 26F with simulation overlay:
 - The three simulation peaks are (red line) 355 MeV peak with a 2 MeV width, (pink line) 1.45 MeV peak with a 6 MeV width, and (blue line) 3.5 MeV peak with a 2.0 MeV width.

Prior Results

- This figure (taken from Reference 1) shows the decay energy of 27F with resonances at 28 KeV (blue line) 350 KeV, and (dotted line) 1200 KeV.
- 27F unbound and bound states of 27F have been observed in prior experiments.1,2,3
- The MONA Collaboration found a resonance produced from a nuclear-exchange reaction between a secondary beam of 27Ne and a target of 19Be.
- The state was difficult to determine due to the type of reaction in that experiment.
- The data presented in this poster looks different from this prior result possibly due to the different reactions or some additional background.

Interpretation

- The states above the Sn line have enough energy to emit a neutron and are still unstable and emit another neutron and ends at a stable 27F with two emitted neutrons.
- The three positive states (red lines) above the S_n line have enough energy to emit a neutron and ends at a stable 27F with one emitted neutron.
- Theoretical calculations for the different ways 27Ne produces 27F or 29F.
- Green lines are for negative parity and red lines are for positive parity.
- An anomaly of how the state is mathematically represented with a positive parity being a cosine function and a negative parity is a sine function.
- Theory calculation using NuShellX

Outlook

- The difference between the prior results and our data will be explored.
- Publish a journal article on the unbound states of 25F and 26F.
- We plan to reconstruct a 3-body decay energy spectrum.

Acknowledgements

We thank our MONA Collaboration colleagues, especially Jaclyn Brett and Dr. Paul Doherty of the Hope College Nuclear Group. We would like to acknowledge support from NSF grant #1304236 and Augustana College.