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Data Insertion in Bitcoin’s Blockchain
Andrew Sward∗ § , Vecna† § , Forrest Stonedahl‡ §

Abstract. This paper provides the first comprehensive survey of methods for inserting arbi-
trary data into Bitcoin’s blockchain. Historical methods of data insertion are described, along
with lesser-known techniques that are optimized for efficiency. Insertion methods are com-
pared on the basis of efficiency, cost, convenience of data reconstruction, permanence, and
potentially negative impact on the Bitcoin ecosystem.

KEY WORDS

1. Blockchain. 2. Data Publication. 3. Script. 4. Transaction Malleability.
5. OP RETURN. 6. Coinbase. 7. Free Speech.

1. Introduction

From its genesis block, and the now infamous headline1 that Satoshi chose to inscribe as the
first permanent message in the Blockchain, Bitcoin49 has been utilized as a free speech platform.
In addition to exchanging digital currency on a global scale, Bitcoin also provides users with
the ability to publish information that cannot be censored or retracted, and will be permanently
available to the world (as long as Bitcoin itself persists). However, the Bitcoin community is
divided with regard to whether this use of Bitcoin as a platform for data publication/storage is an
appropriate one:

“The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is
a controversial subject. Many developers consider such use abusive and want to
discourage it. Others view it as a demonstration of the powerful capabilities of
blockchain technology and want to encourage such experimentation.”

-Andreas Antonopoulos50

Everyone has their own vision of what Bitcoin can and should be used for. While we are
inclined to favor the view that the insertion of data can be a legitimate and valuable use of the
Blockchain, the purpose of this article is not to argue in favor of (or against) the practice, but rather
to enumerate the historical and efficient methods of data publication, and to examine the benefits
and drawbacks corresponding to each method. Specifically, we will compare data publication
methods on the basis of efficiency, cost, convenience of data reconstruction, permanence, and the
potentially negative impact on the Bitcoin ecosystem.
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†Vecna (vecna@protonmail.com) is an undergraduate researcher at Augustana College, IL
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We believe this work will be of interest to several audiences:
(1) For those who wish to store data in the Blockchain, we identify which methods optimize

data storage (and minimize the associated cost) given the constraints of the protocol.
(2) For those who are concerned that the Blockchain is being “co-opted” for data publication/

storage, we provide a clear outline of the presently available methods and explain which
methods mitigate negative side effects for other users.

(3) For future digital archeologists, we provide a valuable point of reference that may allow
posterity to unearth virtual artifacts that otherwise might remain hidden forever in the
Blockchain in binary format.2

2. Related Work

It is common knowledge that extrinsic data can be stored in the Blockchain, and there are
numerous websites that provide access to a subset of that data,51–53 and some excellent sleuthing
has uncovered a variety of interesting historical artifacts that have previously been stored.54

Nevertheless, there remains confusion and misinformation about the variety of different methods
by which data can be (and has been) stored. For instance, a recent comprehensive textbook on
Bitcoin included the following:

“There’s no good way to prevent people from writing arbitrary data into the Bitcoin
block chain [sic]. One possible countermeasure is to only accept Pay-to-Script-Hash
transactions. This would make it a bit more expensive to write in arbitrary data, but it
still wouldn’t prevent it.”55

The first claim, that one cannot prevent arbitrary data insertion, is correct, since there is no
general way to distinguish between legitimate address hashes and arbitrary binary data. However,
the second claim is false, as P2SH (Pay-to-Script-Hash) transactions actually provide the least
expensive and most efficient method for storing large amounts of arbitrary data (see section 5).

There are also a variety of websites56, 57 that provide user-friendly tools to publish data of
one’s choice. However, these tools are currently using the Pay-to-Fake-Key-Hash (P2FKH)
method, which has serious drawbacks (discussed in section 4.2) that make it inefficient for users
of the service and harmful to the Bitcoin infrastructure.

While some previous works have analyzed the graph structure58 and anonymity59 of Bitcoin’s
transaction ledger, there is a dearth of academic work studying the publication and storage of
arbitrary data. The only notable exception is the recent work by Bartoletti and Pompianu60

that analyzed the metadata attached to transactions that use one specific data insertion method
(OP RETURN, see section 4.5) to build protocol layers on top of the Bitcoin protocol (e.g., for
asset management, notarization, etc...). In a different vein, Permacoin61 proposes the idea of
building an alternative to Bitcoin that uses “proof-of-retrievability” rather than proof-of-work,
which would (by design) allow for the storage of massive amounts of arbitrary data, extrinsic to
the transaction ledger.

3. Background: The Bitcoin Script Language

3.1. Standard Scripts—Bitcoin’s stack-based scripting language for creating transactions
is simply called “Script.” Bitcoin transactions contain input scripts and output scripts. The

2
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input scripts are solutions (unlocking scripts) to previous output scripts (locking scripts) in prior
transactions stored in the Blockchain.3 There are currently 5 standard script types50 that are
used and accepted on the Bitcoin network for transactions.4 The standard script types include
Pay-to-Public-Key (P2PK), Pay-to-Public-Key-Hash (P2PKH), Multi-Signature, Pay-to-Script-
Hash (P2SH), and OP RETURN (see Appendix B for the Script formats). Sections 4 and 5 will
demonstrate how each of these script types can be used to store arbitrary data in Bitcoin’s
blockchain. For analysis of historical methods and testing each of the data insertion methods in
this paper, we used the open-source Java library, BitcoinJ.62

3.2. Technical Limitations on Scripts and Transactions—At the time of writing, a standard
Bitcoin transaction is limited to 100 KB, each input script is limited to 1650 bytes,5 and any single
element being pushed onto the execution stack is limited to 520 bytes. After script execution,
the stack must contain exactly one non-false element.63 Input scripts may not contain any OP
codes other than OP PUSHDATA (except within the special Redeem Script portion of a P2SH). The
minimum output value (min non-dust – see definition in Appendix A) for a P2PKH is currently
546 satoshis. Transactions that deviate from these rules 6 are considered non-standard and will
not be picked up by most miners.

3.3. Standard Script Enforcement—Most of the above restrictions on scripts are enforced by
a method in the Bitcoin Core source code called isStandard().7 These limitations were imposed
in the Bitcoin Core client for a variety of reasons, including performance considerations and
preventing an issue known as transaction malleability (see section 6.2). However, this severely
restricts the input and output scripts that one can write. An input script that spends a P2SH
transaction is the only place that affords some flexibility in the use of the Bitcoin Script language.
This flexibility allows more complex logical operations for financial transactions, and it also
allows the greatest variety of data insertion mechanisms. We will first explain each of the four
simpler non-P2SH methods (section 4) then explain the more sophisticated P2SH-based methods
(section 5).

4. Data Insertion Methods Not Involving P2SH

4.1. Coinbase—The coinbase data is the content of the input of a generation transaction.
The coinbase data is arbitrary8 and can be up to 100 bytes in size.50 The coinbase data has been
left to the discretion of the miners and has typically been a field where miners insert ASCII
encoded strings declaring the name of their mining pool, or other short messages. The coinbase
data is also used by miners to signal support for various proposed changes to the Bitcoin protocol.
Some, if not all, of the coinbase data may be commandeered by developers in future versions of
the Bitcoin protocol. While this field is a way of storing arbitrary data on the Blockchain, it is
available only to miners and not general Bitcoin users; it is therefore included in this paper for
thoroughness, but it will not be mentioned again.

4.2. P2FKH—A very common and controversial data insertion method utilizes the standard
Pay-to-Public-Key-Hash script, storing the data in the <PubKeyHash> field of the output script
along with a non-dust amount of Bitcoin to “burn”. We refer to this as Pay-to-Fake-Key-Hash
(P2FKH). The user does not have a public key that would hash to the data they are storing;
because of this, these transaction outputs can never be spent. However, because they are valid
Unspent Transaction Outputs (UTXOs – see Appendix A) and the miners have no way of knowing

3
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Fig. 1. This JPEG image of Nelson Mandela was stored on 7 December 2013 as P2FKHs
spread across multiple transactions, within block 273,536. Size: 14,400 bytes.11

whether the hash corresponds to a real public key that someone possesses, the miners must keep
track of these UTXOs (forever). The storage afforded by the P2FKH method is 20 bytes per
output, but many outputs can be included in a single transaction. This method has been used
to store text,9 images (see Fig. 1), and mp3 files10 in Bitcoin’s blockchain, and is currently the
method employed by tools like Apertus.io.56

4.3. P2FK—Data can also be stored as a fake public key (P2FK), instead of a fake public key
hash.12 An uncompressed public key is 65 bytes,13 and the overall script has 3 fewer OP codes,
making this a much more efficient method for data storage than P2FKH. However, it does not
seem to be in prevalent use by the community as a method for storing data. One possible reason
for this is that it would be relatively easy for nodes to detect fake (uncompressed) public keys
and the Bitcoin developers (or miners) could shut down this approach in the future.14 Storing
data using a fake compressed public key (33 bytes) could work around this, and would still
provide more data efficiency than P2FKH. However, this method also suffers from the problem
of creating unspendable UTXOs.

4.4. Concerns caused by fake addresses—Both the popular P2FKH and the P2FK methods
are problematic for several reasons:

(1) Their storage methods are inefficient, incurring greater overhead (particularly P2FKH)
and more UTXOs than necessary.

(2) The miners must permanently track each unspendable UTXO created this way.
(3) These methods irretrievably “burn” Bitcoin. P2FKH and P2FK both require the user to

send a small amount of Bitcoin (greater than or equal to the min non-dust value) to each
fake address.

(4) Storing arbitrary data in the Blockchain will create “bloat” to the overall ledger size.
The first three problems can be addressed by using improved data storage methods. The fourth
objection will apply to any data insertion method, and the Blockchain is destined to grow larger
as long as blocks are mined and transactions are occurring, regardless of what the transactions
themselves actually represent. Whether the value of the data being stored is a worthwhile use of
the Bitcoin network’s resources is a point the community will continue to debate. Regardless

4
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Table 1. BTC (B) Burned Storing ASCII in P2PKH Transactions

ASCII Character Threshold Amount Burned Via P2FKH Amount of ASCII Data Stored UTXOs

18 118.96 B 2.59 MB 129,410

19 62.77 B 2.58 MB 129,004

20 62.54 B 2.57 MB 128,521

of the data storage use case, Bitcoin will face scalability issues, which developers are already
attempting to address (e.g., segwit,64 Peter Todd’s Merkle Mountain Range proposal to use
commitments to obviate the need to store the full UTXO set65).

Table 1 shows an estimated amount of Bitcoin that has been burned to fake mostly-text
addresses using the P2FKH method, as of 7 June 2017. Specifically, we aggregated the balances
for all P2PKH UTXOs for which the address has never been used as an input script, and the key
hash contains 18 (or more) consecutive bytes from the set of printable ASCII characters, plus
tabs, newlines, and null (‘\x00’) characters that may have been used as padding around textual
data.15

4.5. OP RETURN—The OP RETURN standard script was added as a response to the increas-
ing numbers of users using P2FKH to store data (or metadata) in transactions.50 OP RETURN

allows a small amount of data to be included in each transaction, creating a provably unspendable
UTXO that the miners do not need to track, and that does not require a non-dust burn value.

There can be many outputs in a single Bitcoin transaction, but only one of these can be
an OP RETURN in a standard transaction.16 OP RETURN can currently only store 80 bytes per
transaction. This limit has fluctuated over time (see Bartoletti and Pompianu60 for a discussion
about the history of OP RETURN). To use more than one OP RETURN multiple transactions are
required.17 The order in which these transactions are mined by the decentralized Bitcoin network
is difficult to control. Overall this method is appropriate for inserting small amounts of data
(or transaction metadata), but it is not suitable for large quantities of data. Some community
members have also expressed concern18 about the robustness of storing data using OP RETURN,
since provably unspendable UTXOs can be pruned by nodes, and may not be permanently
stored/distributed by as many nodes.

4.6. P2FMS—Another data insertion method (Pay-to-Fake-Multisig) that commonly appears
in the Blockchain is a 1-of-2 or 1-of-3 multisig script,19 with one real public key, and 1 or 2
fake keys containing arbitrary data.20 Because these transactions are spendable, a user can avoid
creating UTXO bloat. For the lowest overhead cost, one would use a (real) compressed public
key, and store the data using two fake uncompressed public keys (65 bytes each). This method
would keep the data in the UTXO set only until the user decides to spend these outputs (using the
one real key). Multiple P2FMS outputs can be stored within a single transaction, consistently
using the same real public key in all of them, making data reconstruction straightforward.

However, transactions containing a single OP CHECKMULTISIG must be larger than 400
bytes; specifically, the default requirement is 20 bytes per sigop,21 and one instance of OP CHECK

MULTISIG counts as 20 sigops.22 This limitation makes redemption of these UTXOs uneconom-
ical: the cost in fees for spending these UTXOs will be greater than the min non-dust values

5
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that would typically be sent to them.23 Therefore, users with no regard for the UTXO bloat can
simply use all 3 pubkey fields to store arbitrary data with a burn amount.

5. Data Insertion Methods Using P2SH

5.1. P2FSH—Similar to P2FKH, the Pay-to-Fake-Script-Hash (P2FSH) method simply
stores data as a fake hash. P2FSH requires two fewer OP codes than P2FKH (making it slightly
more efficient) but still creates an unspendable UTXO. The remainder of section 5 is dedicated
to methods that store data in the input script that spends a P2SH output, rather than in the output
script.

5.2. Two Stages of P2SH Transactions—There are two stages of P2SH: creating the UTXO
and spending the UTXO. To create a P2SH UTXO, the user first creates a Redeem Script, and
then applies the HASH160 algorithm24 to this script.

The output script is then: OP HASH160 <RedeemScriptHash> OP EQUAL

To spend this UTXO, the user creates an input script (referencing the UTXO above) consisting
of the Redeem Script itself (as a single stack element, thus limited to 520 bytes) preceded by
a sequence of Script operations that will make the Redeem Script result in only true25 after
execution. There are two approaches to data insertion: either store arbitrary data inside the
Redeem Script itself, and/or store arbitrary data in the portion of the input script that precedes
the Redeem Script. For instance, a user might simply make a Redeem Script that contains
an OP PUSHDATA2 (3 bytes) followed by a 517-byte data element.26 Since any stack element
other than OP 0 is evaluated as “true”, this script will successfully redeem the UTXO. However,
because of the 520-byte Redeem Script limit, it is more efficient to store large amounts of
data in the portion of the input script that precedes the Redeem Script (see Fig. 6 for a visual
representation). We will next discuss such methods. (See Appendix C for the full scripts.)
Variations of the following P2SH-based methods have been used to store data in the Blockchain
since June 2014.27

5.3. Data Drop Method—The Data Drop method pushes data onto the stack and drops it
off the stack during script execution, typically with the use of the OP DROP operation. Consider
the following Redeem Script: OP DROP ... OP DROP <PubKey> OP CHECKSIG.29 The
preceding input script operations are then <Sig> <Data>...<Data>. The stored data
must be split into chunks of at most size 520 bytes each. The signature is 71-73 bytes and the
Redeem Script is 37 bytes, which leaves 1529 bytes for arbitrary data after accounting for the
pushdata OP codes. Recall the input script is constrained by the input size limit of 1650 bytes (see
section 3.2), but these inputs can be chained together within a single transaction (up to the 100
KB TX size limit) to store large amounts of data in a nearly contiguous and easy-to-reconstruct
format (more about reconstruction in section 8). This method has been used to store relatively
large image files within a single transaction in the Blockchain (see Fig. 2).

We include a compressed <PubKey> as part of the Redeem Script to ensure that the Redeem
Script hashes to something new each time this method is used with a new key, and the use of a
signature (<Sig> ... OP CHECKSIG) prevents a double-spend attack (see section 6.1). The
data insertion method that provides the lowest known overhead (and publication cost) is a variant
of this (Data Drop w/o Sig) that eschews the use of signatures and keys in order to pack more

6
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Fig. 2. JPEG image of Mr. Burns stored (without any burns) in a single transaction on 5
April 2017 using the Data Drop w/ Sig method (multiple P2SH inputs with a Redeem Script
of OP DROPs). Size: 34,600 bytes.28

data into each transaction input, at the cost of potential adversarial tampering. However, even
using signatures, an adversary could perform an online attack to tamper with data stored using
the Data Drop method (see section 6.2). The trade-off between maximizing storage capacity and
ensuring transaction security and data integrity is discussed further below.

5.4. Data Hash Transactions—The Data Hash method31 is a more sophisticated method for
inserting data in the Blockchain. The largest input script in Blockchain history is an example of
this script type; this transaction32 was included on 27 November 2014, by an unknown author.33

This transaction included a parody of a Western Union advertisement (see Fig. 3). Similar to the
Data Drop method, the input script preceding the Redeem Script contains repeated chunks of
<Data>...<Data>. The Redeem Script is of the form:
OP HASH160 <DataElementHash> OP EQUALVERIFY

These three commands are then repeated for each data element that is pushed onto the stack by
the input script. Rather than merely dropping each data element off the stack, this script uses
hashes to verify that each chunk of data has not been tampered with. Since the hashes are stored
in the Redeem Script, and the hash of the Redeem Script was recorded in the first stage UTXO,
no other data can be substituted into the input script that spends this UTXO, even if the inputs
for this transaction were not signed. However, signing each input (by inserting <Sig> at the
beginning of the input script and <PubKey> OP CHECKSIG at the end of the Redeem Script)
is still necessary to prevent an adversary from potentially reordering the inputs, or including a
subset of the inputs, in a competing transaction. These security concerns are further discussed in
the next section.

6. Security and Data Integrity

6.1. Sniping UTXOs—We refer to sniping as the process of re-appropriating a transaction’s
unsigned inputs to a new transaction with different outputs (created by the sniper and broadcast
simultaneously) to hijack the funds those inputs represent.34 Only one of these double-spend
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Fig. 3. This JPEG image is stored in Bitcoin’s blockchain as a GZIP archive file inside one
input script of a P2SH output. (Compressed) size: 9,265 bytes. This input script is the largest
input script present in the Blockchain to date.30

attempts may be included in the Blockchain. Signatures are designed to protect against sniping
because they prohibit adversaries from making any changes to the signed portion of the transaction
(to do so would require generating a new valid signature, which the adversary cannot do without
the user’s private key). However, when a user creates a signature for an input script, the output
scripts are secured, but not the input scripts.35

Redeem Scripts that do not require a signature are thus vulnerable. If such a script is used
multiple times, it may become associated with its hash, and UTXOs that use this hash may be
spent by anyone who provides the corresponding Redeem Script. One could include a unique
element in the Redeem Script66 so that the hash (of the Redeem Script) is different with each use.
These transactions, however, could still be sniped in real-time by sophisticated bots.

6.2. Transaction Malleability—We define transaction malleability to mean any change to a
transaction that is broadcast (prior to block acceptance). Transaction malleability is a problem
that has plagued Bitcoin for years, and has been addressed in a variety of ways by the Bitcoin
Core development team. The threat to normal users is now rarely more than an annoyance36 but
for data publishers, it is a potentially severe problem that warrants discussion.

When a new transaction is broadcast to the P2P Bitcoin network, it gets passed from node to
node, with nodes verifying it and storing it into the mempool of possible transactions to include
in a block. An adversarial node may receive a transaction and create a modified version of
this transaction to pass along to others in the network. These changes may be as innocuous as
changing a PUSHDATA OP code,67 but a more detrimental change could be to alter the arbitrary
data stored using the Data Drop method. As long as the scripts themselves still result in valid
execution, the modified transaction will have a new transaction ID and could be included in the
Blockchain in this modified form. No “functional” transaction data has been changed: the inputs
and outputs are still accounted for correctly.

Since the Data Drop with signatures method prevents sniping, it does not currently appear
to be a target for malicious agents.37 However, the Data Drop method includes no measures
to prevent an agent on the network from modifying the arbitrary data a user is trying to store,
even if each input is signed. In contrast, the Data Hash method ensures data integrity because the

8
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hash of each data element is checked during execution of the Redeem Script. While a Data Hash
transaction that does not contain a signature could be easily sniped, the sniper would still have
to include the exact unmodified data as input. However for data spanning multiple (unsigned)
inputs, a sniper could rearrange the inputs, or only spend some of the inputs and not others,
causing the data to be stored in the Blockchain in an unintended order. Adversaries motivated
by mere financial gain can be discouraged by assigning only the min non-dust bitcoin value
for each (unsigned) P2SH input, making the sniper effectively pay more in fees (to store your
desired data) than they would recoup from redirecting the output to their own address.38 Thus,
the only method guaranteed to preserve data integrity when using multiple inputs is Data Hash
with signatures.

None of the simpler data insertion methods (P2FKH, P2FK, P2FMS, P2FSH, OP RETURN)
suffer from malleability39 or sniping concerns, since the data is stored within signed outputs.

Table 2. P2SH-based Data Insertion Method Summary (Single Input)

Method SigScript∗ RedeemScript∗ Max Data Integrity Snipeable

Data Drop
(w/o Sig)

<Data> OP DROP... 1630 No Yes

Data Drop
(w/ Sig)

<Sig> <Data> OP DROP...

OP CHECKSIG

1529 No No

Data Hash
(w/o Sig)

<Data> OP HASH <DataHash>

OP EQV...

1560 Yes∗∗ Yes∗∗

Data Hash
(w/ Sig)

<Sig> <Data> OP HASH <DataHash>

OP EQV...

OP CHECKSIG

1461 Yes No

∗ (See Appendix C for the full scripts used for these calculations.)
∗∗ If sniped, multiple inputs within the transaction can be reordered, even though the data within each input cannot be changed.

Table 2 summarizes the two P2SH-based methods with and without signatures in terms of
security and data capacity. Although the Data Hash w/ Sig method provides the least data capacity
of these methods, the benefit of guaranteed data integrity likely outweighs the loss of efficiency.

7. Efficiency Comparison and Costs

First, regarding efficiency concerns about bloating the UTXO set using fake addresses in UTXOs
(as discussed in section 4.4), which impacts the scalability of the Bitcoin ecoystem:
• P2FKH and P2FSH are both extremely wasteful, providing only 20 bytes of data per

unspendable UTXO.
• P2FK is also quite wasteful, although using uncompressed keys currently affords 65 bytes

of data per unspendable UTXO.40

• The currently allowed form of P2FMS (with all 3 addresses fake) could store as much
as 195 bytes (using 3 uncompressed keys) per unspendable UTXO. Versions of P2FMS
with 1 real key are spendable, but there is currently no economic benefit to retrieve min
non-dust values.
• OP RETURN does not bloat the UTXO set, since it is provably unspendable and nodes

9
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may prune it.
• Both forms of the P2SH-based methods that store the data in input scripts (Data Drop and

Data Hash) do not increase the UTXO set at all, since all created TXOs get redeemed.
Next, we consider two additional measures of efficiency:
(1) The total amount of data (i.e. including overhead) that is required to be added to the

Blockchain in order to store a specified amount of arbitrary data (shown in Fig. 4). This
relates to scalability issues, and will be of interest to those concerned with storing full
copies of the Blockchain.

(2) The total cost in satoshis, using current minimal (20 satoshis/byte) fee41 and min non-dust
burn rates necessary for a transaction to be accepted, for storing a specified amount of
arbitrary data (shown in Fig. 5). This measure is of interest to those who wish to store
data in the Blockchain inexpensively.

As Fig. 4 and Fig. 5 show, OP RETURN is the most efficient choice for storing small amounts
of data (up to 80 bytes). For medium amounts of data (between 80 and 800 bytes), P2FMS is
the most cost-effective option, and it provides the least data overhead up to ≈ 10 KB. For large
amounts of data (beyond 800 bytes), the Data Drop w/o Sig method provides the least expensive
option, and it requires the least data overhead beyond 10 KB. The P2SH-based methods that
store data in the input script (Data Drop and Data Hash) have a higher fixed overhead (due to
needing an initial transaction to set up the UTXOs that the second transaction redeems), but offer
competitive levels of data overhead compared to P2FK and P2FMS for larger amounts of data at
much lower costs (since they avoid the burn costs for each UTXO).

Example: for a 50 KB file, the most cost-effective secure method (Data Hash w/ Sig) costs
approximately 0.012B, which is a 61% savings compared to P2FKH (≈ 0.03B). At current
exchange rates (1 BTC ≈ 2500 USD), this would cost about $30 to publish in the Blockchain.

8. Data Reconstruction

8.1. Methods Involving Burns—All methods relying on fake keys and/or hashes are cum-
bersome to reconstruct. For P2FKH, each output contains 20 bytes of data to be retrieved, and
many ordered outputs can be used to store a contiguous data set. To reconstruct the data: Extract
the data from the key or hash in each output script.42 One must be careful to avoid any P2PKH
outputs in the transaction that represent “change” addresses; the data outputs are typically marked
by their min non-dust values. There does not seem to be a defined limit on the number of outputs
a transaction can have.43 Under the 100 KB size limit, P2FKH has a maximum storage size of
58,680 bytes with a total transaction size of 99,983 bytes. Files larger than this will have to be
split among different transactions, and subsequently linked together (either within the Blockchain
itself or by external information).44 This makes fully automatic reconstruction of datasets stored
in the Blockchain more difficult. For P2FMS, reconstruction also means avoiding the pushdata
OP codes between the fake keys.

8.2. Methods Not Involving Burns—For both Data Drop and Data Hash methods, the data
is stored in the input script in the same way. To reconstruct the data, ignore: any signature
data if present, the pushdata OP codes between the data elements, and the Redeem Script itself.
Assuming no malleability concerns, the data will be stored in the same order in which it was
broadcast, within a single transaction (up to 100 KB with overhead), achieving a maximum file
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sizes, up to the maximum size possible within a single transaction.
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denote op codes, dark blue fields denote the arbitrary data chunks being inserted (and the
hashes of that data), and the light green fields denote the signature-related data (omitted for
the w/o Sig variant).

size of 96,060 bytes.45 An OP RETURN output can be used for metadata; such as the name of the
file, or the TX ID46 of the next chunk of data for files larger than 100 KB. A figure showing the
anatomy of an input script is provided, see Fig. 6.

As a point of reference for reconstruction, consider the following transaction, which contains
a JPEG image stored using the Data Hash w/o Sigs method:

TX ID: 033d185d1a04c4bd6de9bb23985f8c15aa46234206ad29101c31f4b33f1a0e49
Block: 474586

The Redeem Script data is easily identified as the last data element of each input. The JPEG
data precedes the Redeem Scripts, three data elements at a time. The second-to-last input contains
only two data elements preceding the Redeem Script. The final input does not contain image
data; it is used to pay fees.

9. Conclusion

A comprehensive survey of the benefits and drawbacks of extant methods revealed that there is
no optimal data insertion method that dominates all of the others. Instead, different methods will
be optimal depending on one’s priorities, and the amount of data to store. For small quantities
of data, using OP RETURN is a solid choice, and is probably also the closest to an “approved”
standard for data publication. For larger amounts of data, if quantity at low cost is paramount and
security is unimportant, the Data Drop w/o Sig method may be the best choice. Alternatively, the
Data Hash w/ Sig method provides a nice balance of data integrity with an efficient cost function
for large data. However, many in the community believe that storing large quantities of data is
not an appropriate use of the Blockchain, and that it should be used for storing short hashes of

12



JULY 2017 WORKING PAPER

documents (i.e. as time-stamped existence proofs) rather than the full documents themselves.
Others in the community take a strong free market stance, and hold that if users are willing to bear
the cost of data insertion, they should be able to use the technology as they see fit. The purpose
of this paper is not to cast value judgments about these perspectives, but rather to encourage
informed discussion about the technical and economic issues at stake. On a pragmatic level, given
Bitcoin exchange rates in recent times, even the most efficient methods may be prohibitively
expensive to publish large files, unless the insertion of that data has significant/lasting value to
the publisher.

It is striking that P2FKH (which appears to be a dominant approach used by several data
publication tools56, 57) fares poorly in almost all regards: it creates the most unspendable UTXO
bloat, it requires the largest overhead, and it costs the most. We have several hypotheses that may
explain its (possibly unwarranted) popularity:

(1) It is one of the simplest to implement.47

(2) Most people are unaware that more sophisticated approaches (like using input-scripts to
store data) exist.48

(3) Tool-makers are concerned that more complex methods may be banned in future versions
of Bitcoin, which would break compatibility.

(4) Users are concerned that any data that does not create unspendable UTXOs will not be
sufficiently permanent, as it may end up being pruned in the future.

This last hypothesis is the most interesting one. On the one hand, as long as Bitcoin survives,
surely some nodes will always keep the full and complete ledger (including input scripts), in
order to have a complete archive of past transactions, and to be able to verify the hashes of
all blocks from the beginning. On the other hand, UTXOs themselves may not be immune to
pruning, as the future might bring the possibility of using cryptographic data structures with
commitments to store the status of UTXOs without storing the UTXO data directly.65 However,
this would likely serve as a caching optimization for miners/nodes, and the full record including
very old UTXOs would still be archived on disk.

As a final caveat, we have attempted to provide a comprehensive review of the major current
and past data insertion techniques, but the knowledge and methods contained in this article are
based on a scripting protocol that is subject to continual change, and thus some of the methods
discussed may become unavailable in the future. For instance, the impact of the Segregated
Witness (segwit) BIP64 on the feasibility of long-term data storage using input scripts is an
important question for future testing and research. However, even if future changes to the Bitcoin
Core disable or enable new features relating to data storage, there is important academic value
in documenting the methods that have been used to date. Knowledge of these methods will
be useful for historical research, and may form the building blocks of future methods of data
publication for Bitcoin, as well as other cryptocurrencies.
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Notes and References

1 “The Times 03/Jan/2009 Chancellor on brink of second bailout for banks.”
TX ID: 4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
Block: 0

2 Textual data is fairly easy to recover, regardless of the insertion method, by searching for ASCII-printable
strings, e.g. using the Unix strings command on the .BLK files. However, binary data files (images, sounds,
compressed files, etc.) are difficult to locate without understanding the structure of the transactions and scripts
that were used to store the data.

3 Technically, transactions may also reference other transactions that have not yet been confirmed in a block
but are residing in the mempool.

4 This has changed over time. Check the current Bitcoin Core client to see what is currently allowed as a valid
transaction script.

5 Chosen because it can handle 15 compressed keys for a multisig transaction as a P2SH, as of Bitcoin Core
0.9.3.

6 This list of rules is not comprehensive and subject to change over time. We list only the rules that directly
affect data storage methods discussed in this manuscript.

7 Ironically, due to Bitcoin’s decentralized approach, the isStandard method is anything but standard, as min-
ers and nodes on the Bitcoin network can adhere to all, some, or none of these “standard” script restrictions,
or even create their own standards to enforce. Moreover, recently the isStandard method has been explicitly
moved to a configuration file to be more easily modifiable by users. This means that innocuous looking scripts
that could result in valid execution may never be propagated by a large portion of the network while other
strange looking scripts might be propagated without issue.

8 BIP 34 adds height as the first item in the coinbase:
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki

9 TX ID: 930a2114cdaa86e1fac46d15c74e81c09eee1d4150ff9d48e76cb0697d8e1d72
Block: 138725

10 An MP3 of Spock saying: “Live long and prosper”, spread across multiple transactions inside of block
number 345858.

11 There is some extra data in the first and last transaction that is not essential to reconstruct the image.

12 TX ID: 77445dd56cea3173e957db23060380fe99a01bab570d93226f831252f85cea41
Block: 471528

13 The OP code for pushing 65 bytes is 41 which corresponds to ‘A’ in ASCII, and thus if this method is used
for text publication, the first byte should probably be reserved for a newline (or other non-printable ASCII
character) so that the popular text extraction scripts do not extract the extraneous ’A’ as part of your text.

14 Nodes could check the x and y coordinates of the public key to ensure they are valid points on the elliptic
curve.

15 This table overstates the value of BTC burned to store textual data, since a significant portion (≈ 58 BTC)
was paid to the known burn address of all 0s, which likely relates to some proof-of-burn mechanics rather than
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data storage. However, the table also underestimates both the value burned and the number of transactions
that store all data, since binary data (JPEG images, MP3 files, etc.), which tends to be much larger than text,
is not accounted for. As of July 2017, there were approximately 52 million total UTXOs,68 meaning that
unspendable ASCII/whitespace/null P2FKH UTXOs comprise about 0.25%. Obtaining an exact accounting
of unspendable UTXOs is impossible, since arbitrary binary data (especially compressed/encrypted data) can
be indistinguishable from legitimate hashes.

16 github.com/bitcoin/bitcoin/blob/1ad3d4e1261f4a444d982a1470c257c78233bda3/src/policy/policy.cpp#L152

17 Using more transactions necessitates more inputs and possibly outputs, increasing fees.

18 See comments in https://github.com/bitcoin/bitcoin/issues/8079

19 More than 3 signatures in a “bare” multisig output script are marked non-standard; higher (e.g. 1-of-12)
multisigs are generally done using P2SH.

20 TX ID: a1e537ac06869cf63845ee1fc1a267c5b3bd1db3ac36e6a21fa4ffe20a941b2a
Block: 351746

21 https://github.com/bitcoin/bitcoin/issues/8079

22 https://gist.github.com/gavinandresen/4135d03a56e0ecd146c7

23 Even assuming a very low 5 satoshi/byte fee and TX size of 400, a 2000 satoshi fee is nearly quadruple the
size of the current min non-dust value.

24 HASH160 is a shorthand for RIPEMD(SHA256(Redeem Script))

25 BIP 62 requires that the stack contain precisely one non-false value after script execution.

26 TX ID: afe9034d3afb9d7d8db064b7944d42b30d650d333819cdbe0132ed71febb9725
Block: 475205

27 TX ID: d771f31ad04904564da77c1106cde85d06cd641cf2977ffa36f0dd03e89eef4f
Block: 307594

28 TX ID: 94e319d09fc236fb9d7a24e60af8f47ed41ca3cc01e9950c925d806153ed8aa3
Block: 460435

29 For utmost efficiency, OP 2DROP should be used to drop two data elements from the stack at a time.

30 Likely to remain so, given the current limit on the size of inputs is now only 1650 bytes.

31 Sometimes colloquially referred to as the “Western Union” or “WU” method. See Fig. 3.

32 TX ID: 200f3f6f8a91ae438d1924e5cedca98cea7f0197b9eba11343948b5621ca19ed
Block Number: 331804

33 This script format resembles the approach used to store textual data in Peter Todd’s publish-text.py,66 but
Todd denied authorship of this transaction, which predates the publication of his Python script by about 6
months.

34 This behavior has been observed in the wild.

35 The signature is based on a modified copy of the transaction with empty input scripts.
See https://en.bitcoin.it/wiki/OP_CHECKSIG for details.

36 A user’s transaction may be modified in a minor way that does not affect the transaction’s functionality but
does alter the TX hash, which can make it more difficult for wallet software to track its status.

37 However, this could change if adoption becomes widespread and/or if transaction malleability continues to
be a problem in the future.

38 Note: an adversary may have much stronger motives for mangling the data publication, depending on the
data in question. Also, automated sniping scripts may be programmed to act in an economically rational way,
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but it seems risky to count on this.

39 Technically, the standard malleability concerns apply regarding altering TX IDs via nonfunctional changes,
but the signature protects the integrity of data fields within output scripts.

40 Although note that if future versions of Bitcoin choose to crack down on data storage using this mechanism,
it would be necessary to format your data as a “valid” compressed public key (33 bytes long, starting with 02
or 03.

41 Fees vary as a result of competition between transactions within the mempool. A transaction fee of 20
satoshis/byte currently appears sufficient to ensure the transaction is included in a block eventually, although
in times of heavy traffic it could take a long time (we have witnessed wait times of up to one week with
this fee rate). Higher fees increase your transaction’s priority, which could be necessary for publication of
time-sensitive data.

42 Do not confuse the PubKeyHash (as bytes of data) with the Base58Check encoded Bitcoin Address.

43 The largest number of outputs within a single transaction in the Blockchain we found is 13,107.
TX ID: dd9f6bbf80ab36b722ca95d93268667a3ea6938288e0d4cf0e7d2e28a7a91ab3
Block: 391204
This transaction exceeds the 100 KB transaction size limit currently imposed by isStandard.

44 Multiple transactions all broadcast simultaneously could end up inside a block in any order, or be separated
by blocks.

45 63.7% more data than P2FKH.

46 Beware of malleability issues, even a change of a single pushdata OP code will change the TX ID.

47 In fact, it can be used to store small amounts of text using any standard wallet software, with a relatively
simple conversion to convert ASCII data into a Bitcoin address.

48 We hope this paper will help to remedy this.

49 Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
(2008).

50 Antonopoulos, A. M. Mastering Bitcoin: unlocking digital cryptocurrencies (O’Reilly Media, Inc., 2014).

51 Anduck. Bitcoinstrings.com. https://bitcoinstrings.com/ (Accessed July 2017).

52 Coin Sciences Ltd. Coin secrets (beta). http://coinsecrets.org/ (Accessed July 2017).

53 HugPuddle Team. Bitfossil. http://bitfossil.com/ (Accessed July 2017).

54 Shirriff, K. Hidden surprises in the bitcoin blockchain and how they are stored: Nel-
son mandela, wikileaks, photos, and python software. http://www.righto.com/2014/02/
ascii-bernanke-wikileaks-photographs.html (2014).

55 Narayanan, A., Bonneau, J., Felten, E., Miller, A. & Goldfeder, S. Bitcoin and Cryptocurrency Technolo-
gies: A Comprehensive Introduction (Princeton University Press, 2016). pp. 217-218.

56 HugPuddle Team, embii & The AtomSea. Apertus. http://apertus.io (Accessed July 2017).

57 Erstu, E. (a.k.a. 1Hyena). Cryptograffiti.info v0.90. http://www.cryptograffiti.info/ (Accessed
July 2017).

58 Ron, D. & Shamir, A. Quantitative analysis of the full bitcoin transaction graph. In International Confer-
ence on Financial Cryptography and Data Security, 6–24 (Springer, 2013).

59 Reid, F. & Harrigan, M. An analysis of anonymity in the bitcoin system. In Security and privacy in social
networks, 197–223 (Springer, 2013).

60 Bartoletti, M. & Pompianu, L. An analysis of Bitcoin OP RETURN metadata. arXiv preprint
arXiv:1702.01024 (2017). URL http://arxiv.org/abs/1702.01024.
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Appendix A: List of common terms

We list some common definitions and abbreviations used in the paper.
• UTXO: Unspent Transaction Output. Each input references a previous UTXO to spend

the coins associated with that UTXO. One can think of the set of UTXOs as “places
where Bitcoin is stored and can potentially be used as sources for future transactions.”
• Redeem Script: A script that is hashed, and this hash is used as the output of a Pay-to-

Script-Hash transaction. The Redeem Script and any inputs it takes are supplied when a
user wishes to spend the output that was created. These inputs and the Redeem Script
itself are executed and must return true in order for the transaction to be valid.
• Dust: If the fees to spend a transaction output (determined from the size of the output

and the input required to spend it) would cost more than one third the value of that output,
the output value is considered dust. Transactions with dust output values are considered
non-standard.
• Min Non-Dust: The minimum non-dust value is the least value one can send without

the output being flagged as dust. The minimum output value for a P2PKH is currently
546 satoshis. This minimum threshold value changes depending on the script being used.

Appendix B: Standard Transaction Scripts

(1) Pay-to-Public-Key (P2PK):
Output (locking) Script: <PubKey> OP CHECKSIG

Input (unlocking) Script: <Sig>
(2) Pay-to-Public-Key-Hash (P2PKH):

Output Script: OP DUP OP HASH160 <PKHash> OP EQUALVERIFY OP CHECKSIG

Input Script: <Sig> <PubKey>

(3) Multisig (a.k.a. “bare multisig”, or “multisig output”):
Output Script: M <PubKey 1> ... <PubKey N> N OP CHECKMULTISIG

Input Script: OP 0 <Sig 1> ... <Sig M>

17

https://bitcoinj.github.io/
https://github.com/bitcoin/bitcoin/commit/39f0d9686095bce469dbfa52333331a5d15c6545
https://github.com/bitcoin/bitcoin/commit/39f0d9686095bce469dbfa52333331a5d15c6545
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://github.com/petertodd/python-bitcoinlib/blob/master/examples/publish-text.py
https://github.com/petertodd/python-bitcoinlib/blob/master/examples/publish-text.py
http://www.righto.com/2014/02/bitcoin-transaction-malleability.html
http://www.righto.com/2014/02/bitcoin-transaction-malleability.html
http://statoshi.info/dashboard/db/unspent-transaction-output-set
http://statoshi.info/dashboard/db/unspent-transaction-output-set


JULY 2017 WORKING PAPER

(4) Pay-to-Script-Hash (P2SH):
Output Script: OP HASH160 <RedeemScriptHash> OP EQUAL

Input Script: <Data> <RedeemScript>

(5) OP RETURN:
Output Script: OP RETURN <Data> (up to 80 bytes)
(This output can never be spent, so it has no corresponding input/unlocking script.)

Appendix C: P2SH Storage - Full Scripts

(1) Data Drop w/o Sig:
Input Script: <Data (520 bytes)> <Data (520 bytes)>

<Data (520 bytes)> <Data (70 bytes)> <RedeemScript>

Redeem Script: OP 2DROP OP 2DROP <RandomNumber (6 bytes)>

Note: A random number was included to help prevent the Redeem Script’s hash from
becoming known. (See section 6.1)

(2) Data Drop w/ Sig:
Input Script: <Sig> <Data (520 bytes)> <Data (520 bytes)>

<Data (489 bytes)> <RedeemScript>

Redeem Script: OP DROP OP 2DROP <PubKey> OP CHECKSIG

(3) Data Hash w/o Sig:
Input Script: <Data 1 (520 bytes)> <Data 2 (520 bytes)>

<Data 3 (520 bytes)> <RedeemScript>

Redeem Script: OP HASH160 <Data3Hash> OP EQUALVERIFY OP HASH160

<Data2Hash> OP EQUALVERIFY OP HASH160 <Data1Hash> OP EQUAL

(4) Data Hash w/ Sig:
Input Script: <Sig> <Data 1 (520 bytes)> <Data 2 (520 bytes)>

<Data 3 (421 bytes)> <RedeemScript>

Redeem Script: OP HASH160 <Data3Hash> OP EQUALVERIFY OP HASH160

<Data2Hash> OP EQUALVERIFY OP HASH160 <Data1Hash>

OP EQUALVERIFY <PubKey> OP CHECKSIG
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