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Abstract 

The Northern Range, Trinidad underwent deformation due to oblique collision of 

Caribbean plate with northern South America, which was then followed by transform plate 

motion. Deformation began in the late Miocene when sedimentary protoliths were ductility 

deformed and metamorphosed to greenschist facies; this event and subsequent transform 

deformation drove exhumation of these rocks to the surface and created their high topography. 

This project provides constraints of the structural history of the western Northern Range where 

bedrock mapping and structural analyses are most complete. Initial geologic mapping of 

Northern Range, which continued from the 1950s,1960s, and 1990s, focused on attempting to 

establish and map a protolith stratigraphy. Our new approach has been to simply map the 

observed metamorphic rock types. We supplement our new map with abundant mesoscopic 

structural fabric measurements collected from roadcut, streambed, and quarry exposures.  We 

synthesized the new map and all structural data into a GIS geodatabase. The data were used to 

construct cross-sections and stereonets along a continuous N-S transect across the entire western 

Northern Range. Our analyses highlight three major phases of deformation in the western 

Northern Range. D1 (Early Miocene) produced a S1 foliation that completely transposed the 

original stratigraphy and dips south at an azimuth between 150-220°. D2 folded S1 into 

asymmetric trains of south-verging m- to dm-scale mesoscopic folds. D3 produced conjugate sets 

of NE-SW- and NW-SE-trending f3 folds. The timing of D2 is not well constrained. D3 is 

probably associated with Pliocene extension related to the local development of pull-apart 

basins. Our cross-section highlights: 1) range front domains of upright NW-SE trending 

folds, and 2) the range-bounding Arima Fault zone, a ~100m wide zone of young, but inactive 
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(Plio-Pleistocene), ~E-W trending, sub-vertical (both N- and S-dipping), predominantly dip-

slip, normal sense, faulting. 

Keywords: Caribbean, Structural Geology, Trinidad, Seismicity, Tectonics 

 

1. Introduction 

The Northern Range in Trinidad is located on a transitioning subduction and strike slip 

plate boundary (Figure 1; Bilich et al., 2001). Regions with transitioning plate boundaries have 

complex deformational mechanisms and are not well understood (Arkle et al., 2021; Bilich et al., 

2001). It has been hypothesized (Algar and Pindell, 1993; Arkle et al., 2021) that deformation 

and metamorphism of the Northern Range’s sedimentary rocks began occurring in the mid-

Miocene with a transpressional event. Arkle et al. (2021) also recognizes a transtensional event 

beginning at the late-Miocene, early-Pliocene, and suggests this led to east-side-up tilting of the 

Northern Range.  

 Previous structural and stratigraphic studies in the Northern Range have treated rock units 

as sedimentary rocks, instead of metamorphic rocks (Weber et al., 2001b). This interpretation 

has led to discrepancies when describing deformation mechanisms acting on the region, as well 

as a lack of understanding in geologic risk associated with deformational features. The goals of 

this research are to: (1) refine and update existing geologic maps of the western Northern Range, 

and (2) construct a detailed geologic cross section that traverses the western Northern Range 

from the north coast to range front (north to south). These new data are used to understand 

deformation mechanisms and history that have occurred in the Northern Range since sediment 

deposition. Interdisciplinary approaches were used to achieve these goals using GIS and 

cartography to analyze and prepare data for interpretations.  
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2. Background 

2.1 Regional Tectonics 

 In the Jurassic, Trinidad was located on a passive plate margin that formed after North 

and South America rifted (Algar and Pindell, 1993; Weber et al., 2015, 2019). Rifting during the 

Jurassic likely set up the Northern Range for deformation during the Miocene and the formation 

of the right-step in the transform plate boundary by extending oceanic crust in the Caribbean Sea 

basin (Molnar and Sykes, 1969; Babb and Mann, 1999; VanDecar et al., 2003). Sediments are 

hypothesized to have been deposited on the passive continental shelf from the South American 

craton. This is based on the similar lithologies of the rock found in both South America and 

Trinidad, which are hypothesized to be deposited by the Orinoco River (Algar and Pindell, 1993; 

Weber et al., 2015). There are differing hypotheses on whether the Northern Range sediments 

were transported directly by the Orinoco River or if they were accreted onto Southern Trinidad 

by the Caribbean plate in the Miocene (Algar and Pindell, 1993). Today the Caribbean plate is 

moving dextrally at ~20 mm/yr approximately due east (Weber et al, 2001a). The plate boundary 

in Trinidad is currently mapped as the Central Range Fault (CRF) and takes on much of the 

dextral strain at ~12-15 mm/yr (Weber et al., 2001a, 2011, 2019).  

There have been at least three stages of deformation in northern Trinidad (Algar and 

Pindell, 1993; Weber et al., 2001b; Arkle et al., 2021). Stages one and two (S1 and S2), which 

occurred during the Miocene transpressional deformation, were caused by oblique collision, and 

resulted in S1 folds and foliation and S2 late folds and foliation. Stage three (S3) occurred during 

extensional deformation in the Pliocene (~4 Ma), causing shear band formation and normal 

faulting (Weber et al., 2001b). Transpressional deformation as seen in S1 and S2 have a strike 

direction that strikes east-west and tend to dip south. However, there is a difference in dip 
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direction from north to south in the Northern Range, as the tectonic foliation begins to dip north 

across the Arima Fault. The faults that make up the S3 deformation have a relatively 

perpendicular strike to S1 and S2 where they strike to the north or south, and dip to the east and 

west. Extensional processes began occurring in the Pliocene when the plate boundary stepped 

southward, creating a pull-apart basin (Weber et al., 2019; Arkle et al., 2017a; Babb and Mann, 

1999).  

Along with brittle deformation, the rocks of the Northern Range have experienced 

different metamorphic temperatures as well as exhumation timing and rates (Weber et al., 2001b; 

Arkle et al., 2021). The northern and western Northern Range rocks had higher metamorphic 

temperatures than the central and eastern parts of the range. The western Northern Range has an 

approximate exhumation and cooling time around 15-12 Ma, the eastern Northern Range had 

non-reset zircon fission-track ages and young apatite Helium ages indicating little to no 

exhumation until the last ~4 Ma (Arkle et al., 2021). Metamorphosing temperatures decrease 

eastward and southward across the Northern Range with the northwestern and central portions 

reaching ~250-300 °C and the eastern and southern portions only reaching ~150-200 °C (Weber 

et al., 2001b). Greenschist facies metamorphism of the rocks has made stratigraphy more 

complex with formation boundaries being hard to distinguish and differing grade of the same 

unit making unit identification difficult (Algar and Pindell, 1993).  

 Researchers have proposed differing hypotheses to explain exhumation mechanisms. 

Cruz et al. (2007) hypothesized that uplift and exhumation were being driven by isostacy 

bringing up the deep roots in the mountain range. However, Arkle et al. (2021) have 

hypothesized that the STEP (Subduction-Transform-Edge Propagator) fault north of the Paria 

Peninsula has been exhuming Northern Range rocks as it propagates eastward. Lithospheric 
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tearing in Trinidad is required for dextral motion to occur, which allows the oceanic South 

American plate to subduct, and thus the lithospheric plate must tear (Govers and Wortel, 2005). 

The STEP fault and lithospheric tearing in the Paria Peninsula has been proposed by Clark et al. 

(2008) as well as by Russo and Speed (1992). Russo and Speed (1992) also hypothesized that the 

northern edges of South America and Trinidad were experiencing crustal thickening from the 

lithospheric tear causing slab detachment.  

2.2 Seismicity 

Along the subduction-transform transitioning plate boundary, more thrust and reverse 

fault movement is recorded than strike-slip motion (Bilich et al., 2001). The pattern that is seen 

is that oblique plate movement is often characterized as a traditional subduction zone with thrust 

faults and occasional normal faulting (Bilich et al., 2001). Seismic risk associated in regions with 

transitioning boundaries can become difficult to predict due to the possibility that the transform 

boundary is locked, producing large and dangerous earthquakes (Weber et al., 2011). It is also 

the case that more thrust and reverse faults in an area will increase seismic risk due to the 

possible magnitudes that can be produced on those fault types (Bilich et al., 2001; Zaliapin and 

Ben-Zion, 2016).  

Trinidad is located directly on an active plate boundary. Complex deformation in and 

around Trinidad created thrust faults, some of which have now been reactivated as normal faults 

due to recent extension working on the region (Weber et al., 2019). As the Caribbean plate 

moves, faults such as the CRF are taking on strain causing them to creep (seismically or 

aseismically) as long as they are not locked (Weber et al., 2001a, 2011, 2019). Locked faults 

produce large and infrequent earthquakes, posing a higher seismic risk to people living in the 

region of the quake (Weber et al., 2011). Higher seismic risk is mainly due to the large, 
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infrequent earthquakes, but infrastructure is typically not built to withstand earthquakes of that 

magnitude. Due to not having a complete geologic map and structural study done in the Northern 

Range of Trinidad, knowing where faults are as well as what faults are active is difficult, 

increasing seismic risk in the range. Areas with high amounts of active faults also pose risk of 

having one earthquake trigger a swarm of earthquakes on neighboring faults, forming earthquake 

clusters (Zaliapin and Ben-Zion, 2016). The Caribbean-South American plate boundary is a cold 

boundary and has a subducting slab, so if earthquake clusters occur, they tend to be burst-like 

clusters with one main shock following many smaller foreshocks (Zaliapin and Ben-Zion, 2016).  

Along with being in a very tectonically active zone, Trinidad faces another seismic risk 

with the presence of a slab tear located from the western Northern Range, through the Gulf of 

Paria, and into the Paria Peninsula (Arkle et al., 2017a; Meighan et al., 2013). Locations with 

slab tears experience earthquake clustering occurring between shallow and intermediate depths 

(Meighan et al., 2013). In Trinidad, earthquakes have been observed at depths from 51-108 km 

(Clark et al., 2008), and more recently up to ~180 km (USGS Data). While intermediate-depth 

earthquakes are typically less destructive, lithospheric tearing and intermediate-depth seismicity 

can also lead to subsidence in the region, which is seen as east-side-up tilting in Trinidad (Arkle 

et al., 2017a).  

3. Methods 

To understand how tectonic plates are moving in the region around Trinidad, and how 

plates moved in the past, there first needs to be an understanding of the geology of the Northern 

Range and the deformational structures that tectonism has formed. Data collected for this study 

include the deformational structures that can then be analyzed to understand past plate motion as 

well as how the Caribbean Plate collided with Trinidad in the Miocene. For accurate 
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representation of the structures, data was analyzed spatially to show how deformation changes 

along the N-S transect. 

3.1 Data 

 The data used for this study come from fieldnotes taken in the early 1990s by John 

Weber, Bob Speed, and other researchers, and consist of any deformational features found at 

road outcrops (Figure 3). These features are labeled with their stage of deformation (S1, S2 or 

S3). For simplicity, this study only uses data points with characteristics of first stage 

deformational structures (S1). S1 features consist of tectonic foliation in the form of sheet dips in 

the metamorphic rocks. The S1 tectonic foliation are hypothesized to be parallel to the bedding 

planes that were present in past sedimentary rocks (Weber et al., 2001b). Information derived for 

the geodatabase came from structural data from John Weber’s fieldnotes, stratigraphy published 

by Algar and Pindell (1993), and differing metamorphic temperatures discussed in Weber et al. 

(2001b). All these data were used to help determine the orientation, rock type, and grade of 

metamorphism across the Range. Data collected was only accessible along road cuts due to the 

dense vegetation in the Northern Range. This created difficulty of viewing structures on a large 

scale in the field. Data points were compiled into a spreadsheet from PDFs to create a working 

geodatabase to be used in a GIS (Table 1, Appendix). Once organized these data and were 

plotted in ArcGIS Pro to create four transects for a N-S cross section to be constructed.  

3.2 GIS and Cartography 

Data from the geodatabase were plotted in ArcGIS Pro which allowed for four stepped 

transect lines to be drawn to encompass all data points in the western Northern Range. When 

plotted with the transect lines, geology, and structural data it created a map overview of the cross 

section transects and allows for spatial distribution of data points to be understood. Transects are 
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stepped to follow the roads that traverse the mountains, where structures were accessible and 

able to be recorded. Cartographic principals were used to generate a detailed geologic map 

including hillshade to highlight topography in Trinidad (Figure 4). This map was then brought 

into Adobe Illustrator to add labels, a legend, and to adjust images to best show the data in an 

accurate way.  

The transect lines created in ArcGIS Pro were then imported into qGIS along with the 

geology polygons and all S1 and fault features from the geodatabase to create topographic 

profiles along each line to be used in the cross section. To do this, a buffer was created along 

each line to select the needed data points that would be included on each section. A plug-in 

called “qprof” is a software that takes line data and a DEM to create a topographic profile line 

along the entirety of the transect. Qprof also allows for structure points, faults, and the geology 

polygons to be embedded into the topographic profile so orientation can be seen along with 

geology for each section of the cross section. Four profiles were made to correspond to each of 

the 4 original transect lines and were brought into illustrator and combined into one profile, 

oriented N-S along the range.  

3.3 Stereonets 

 Stereonets of all the data used in the cross section were imported into Allmendinger’s 

stereonet software to show orientation of planar features along with variations in orientation to 

be seen for each transect. The stereonets were used correspondingly with the topographic profiles 

generated in qGIS to ensure that the data was interpreted in the most accurate way while the 

cross-section was being drawn. Stereonets also aided in the visualization of the structures in a 3D 

manner, allowing for variations of planes to be noted and to interpret the difference between 

faults and S1 foliation. Figure 5 shows each stereonet labeled with the corresponding transect. As 
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the cross section was made, this figure was used as reference between the collected data and 

interpretation. The importance of stereonets in this project was to showcase the raw data in a 

figure instead of a data table, but also to give light to how the Caribbean plate moved from 15 

Ma to present based on the orientations of the data.  

3.4 3D GIS and Cross sections 

 Cross sections were drawn across the each of the four transects located in the western 

part of the Northern Range and seen in figure 4. Cross section construction consisted of 

projecting planar data, in the form of tadpoles, down into a digitized geologic map from each 

attitude measurement. Because data was selected in a buffer around each transect line, there are 

data points that do not line up perfectly with the profile line. These data points were projected 

from their original elevation to preserve sheet dip orientation as well as to show how the geology 

was eroded above the profile line to give us the elevation there today. Adobe Illustrator was used 

to line up each of the four transects into one cross section line and allowed for linework to be 

cleaned up and color correction to aid in visualization of each feature. Figure 6 shows the 

entirety of the cross section with all data points. 

 The combination of stereonets along the transect and the cross section allow for the 

understanding of whether S1 deformation was coming from the north during oblique collision, or 

if tensional or lateral deformation was the dominant deformation mechanism in the Miocene. 

Deformation mechanisms may also shift across the range as the Caribbean plate shifted from 

oblique collision to dextral motion. Patterns of shifting deformation would be observed going 

from west to east following motion from the Caribbean plate and would be seen in map 

reconstructions of metamorphic temperatures and in deformation style.  
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4. Results 

4.1 Geodatabase Results 

 The completed geodatabase was analyzed and patterns of sheet dip orientations going N-

S as well as E-W could be drawn out. The results show that sheets in the Northern Range above 

the Arima Fault zone dipped toward the south. Once the Arima Fault was crossed (Figure 4: 

Hilltop Transect), the sheets start to dip northward. While the Arima Fault has a known location, 

these data show where the fault plane changed the dip direction of the rocks and aids in the 

revision of the Northern Range’s geologic map by giving more updated information on unit 

boundaries. Adding rock type to the geodatabase also allowed revisions to the geologic map to 

present a more accurate image for what is known about the Northern Range geology.  

Other notable patterns in the dataset involve fault planes and shear zones tending to dip 

E-W and have characteristics of normal or tensional movement along the planes. Most of the 

faults were along the North Coast Road or near the Arima Fault zone on the Hilltop Transect. 

With the Paria Pull-apart Basin causing east-side-up tilting in the Northern Range, it makes sense 

for the extensional deformation to be seen along the road where east-side-up deformation is 

occurring. The faults along the Hilltop transect are in such close proximity to the Arima Fault 

zone that it is likely that they were reactivated as normal faults when extensional deformation 

started occurring.  

4.2 Geologic Map Results 

 The geology of the Northern Range was mapped previously before this project so there 

was a base layer to build on as it was created. The making of the geologic map (Figure 4) of the 
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Northern Range started in the geodatabase and understanding how rock type and structure 

orientation varied across Trinidad spatially. Some of these variations include where faults are 

located, orientation of sheet dips, and where each formation boundary is. The goal of having this 

map was to aid in visualization of the geology of Trinidad, but also to give the data needed to 

revise the map to produce a more accurate map to what is seen on the ground by moving 

geologic boundaries and adding in new unmapped fault planes to future maps.  

 Mapping new fault planes and fault zones is imperative for understanding the 

deformation mechanisms that have been acting on the Northern Range since collision with the 

Caribbean plate in the mid-Miocene. Knowing where faults are located also aids in the 

understanding of how deformation has shaped risk across the Northern Range. Many of the faults 

were located along the North Coast Road and in the southern most end of the Hilltop transect. 

This tells researchers that communities along those roads or transects should be made aware of 

fault movement and will also give way for new projects where faults are mapped in the field and 

movement along those faults can be determined.  

 The map gives a large-scale view of the structures present in the western Northern Range 

before details are further drawn out in the cross section. What can be seen is that all sheet dips 

from the northern most coast to the Arima Fault zone dip towards the south. When the Arima 

Fault is crossed, sheet dips in the metamorphic rock begin to dip north. While no interpretations 

can be derived from this large-scale view, it gives an overview of what should be expected when 

the cross section is drawn.  

 The data collected has changed the hypothesized location of the Arima Fault zone, as 

well as rock layers surrounding the fault zone. Understanding where sheet dips change dip 
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direction from south to north, helped with the placement of the Arima fault on the geologic map, 

providing the most accurate location of the fault zone.  

4.3 Stereonets 

 The stereonets generated for the Northern Range consistently show south dipping sheet 

dips north of the Arima fault, and north dipping sheets south of the Arima Fault. Faults can be 

seen along the transect and are identified on the stereonets by their near perpendicular angle with 

the S1 data. Many of the faults are also characterized by their steep dips compared to the 

shallower dips of the metamorphic sheets. Faults tend to dip E-W opposed to the N-S dips of the 

S1 deformation. Faults dipping E-W along each transect show regions where extensional 

deformation has occurred. The Lady Chancellor Road transect is the only transect to have a 

reverse fault present where the fault plane dips N-S similar to the dips of S1.  

 Deformation features along the southern most transect of the cross section were separated 

by feature type for clarity. The Hilltop transect shows three different stages of deformation: 

microfolds north of the Arima fault zone (domain 1), faulted rocks (domain 2) and a homoclinal 

fold pattern (domain 3). Stereonets created for this transect are showing how the Arima Fault 

zone has shifted metamorphic sheet orientation, as this is the only transect with most of its sheet 

dips dipping to the north. The stereonets also show where the largest fault of the Arima Fault 

Zone is located, by showing where most of the fault data clusters. When compared to the data in 

the geodatabase, the Arima Fault is tentatively located along meter 143 of the Hilltop Transect. 

Fault kinematics were done by Dr. John Weber using Allmendinger’s stereonet software to show 

fault planes, their principal strains, and their slip.  

 All stereonets (figure 5) have been cleaned up by removing outliers from the chart to 

focus on the spatial patterns that can be seen along the Northern Range. Outliers in the S1 dataset 
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were likely measurements of regional microfolds. These folds were excluded to better 

characterize the overall structure of the Northern Range.  

4.4 3D GIS and Cross Sections  

Maracas Bay Transect 

 The Maracas Bay transect is comprised of two stages of deformation, S1 and S3. The S1 

deformational features are all tectonic foliation tending to strike on average ~70-250 degrees all 

dipping predominantly south or slightly southwest or southeast. The fault present was previously 

unmapped, and it can be distinguished from the S1 features due to its near perpendicular 

orientation compared to the foliation. The fault strikes NNW at about 340 degrees with a much 

steeper dip than the tectonic foliation.  

Maraval Transect 

 The Maraval transect only shows one stage of deformation, the S1 tectonic foliation. The 

foliation in this transect are a continuation of the foliation seen north of this transect along the 

Maracas Bay transect. The orientation of the foliation are more varied along this transect striking 

approximately 150-220 degrees and dipping more southwest/southeast than directly south. The 

foliation dips are consistent within this transect as well as the Maracas Bay transect.  

Lady Chancellor Road Transect  

 Lady Chancellor Road transect is along the foothills of the range, where lower 

topography and small basins filled with alluvium can begin to be seen. This transect shows two 

stages of deformation like the Maracas Bay transect, where S1 and S3 can be seen. There is more 

variation in the foliation along this transect, striking about 30-120 degrees and dipping southeast 

or directly south. There are three faults along this transect, though only two are seen along the 

cross section (Figure 6). Only two faults are seen along the transect because one fault plane dips 
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south and cuts other faults and foliation along the transect, so it was omitted for clarity. This is 

the only fault that dips south along the entire cross section. The two faults shown in figure 6 dip 

north and like the Maracas Bay transect, the faults strike approximately perpendicular to the S1 

foliation.  

Hilltop Transect 

 Hilltop transect is the most complex transect along the cross section, due to the transect 

showing all three stages of deformation: S1, S2, and S3. S1 deformational features are tectonic 

foliation but along this transect, a majority of the foliation dip north. There are some south 

dipping foliation, which are located south of the Arima Fault Zone. This transect is the only 

transect where S2 deformation was included on the cross section, because there was a focused 

patch of S2 deformation that could clearly be seen without cross cutting the S1 foliation (Figure 

6, Hilltop Transect). The S2 deformation present along this transect are mesofolds that are 

perpendicular to the north dipping S1 deformation. The S2 deformation was excluded from the 

other transects of the cross section because they are near perpendicular to S1, therefore, they 

were excluded for clarity. The mesofolds strike NE or SW (Figure 5, HT 1), which differs from 

the S1 foliation which strikes near due east or west and the S3 deformation which strikes north 

This transect has an overwhelming amount of S3 deformation, due to the presence of the Arima 

Fault Zone, which is an ~100m wide fault zone bounding the Northern Range. Most of the fault 

planes were located along meter 143 of the 200-meter data transect, giving an approximate 

location for the Arima Fault.  

5. Discussion 

The cross section created shows how the plate collision and the later transtension during 

the Miocene, deformed and reshaped the geometry of the Northern Range. The first and most 
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ductile deformational stage of oblique collision created the stage one (S1) tectonic foliation, 

which shows the Northern Range as a large homocline. Three of the four transects show south 

dipping foliation, while Hilltop transect shows the southernmost limb of the homocline with the 

foliation dipping north. Hilltop transect also has the only stage 2 (S2) deformation (Figure 6, 

Hilltop Transect) shown on the cross section in the form of mesofolds, typically perpendicular or 

cross-cutting S1. Transtension is the most recent and brittle stage of deformation occurring as 

movement along the STEP fault propagates subduction to the east of Trinidad, and the Paria 

Pull-Apart basin continues to experience crustal extension. Stage three (S3) deformation is 

classified normal displacement shear bands and normal faulting, approximately striking N-S and 

dipping east or west. S3 features also include reverse faults reactivated as normal faults.  

Cross section analysis helps us understand how the Caribbean plate interacted with 

Trinidad during the Miocene, and how the resulting deformation has influenced the current 

deformational processes on the Northern Range, and the island of Trinidad as a whole. Current 

deformational processes are different than the processes in the Miocene due to the eastward shift 

in movement from the Caribbean plate. With past deformation mapped and understood, current 

deformation from the STEP fault and the Paria pull-apart basin could be used to show and 

predict tectonic risk on the island.  

5. Conclusions 

The early Miocene saw the Northern Range shift from a passive margin where sediments 

were being deposited to an active plate boundary. In the early Miocene the Caribbean plate 

collided with the Northern Range coming from the north/northwest resulting in reverse faults 

bounding the range and S1 foliation oriented with East-west strikes and south dips. As the 

Caribbean plate began moving along a more due east vector, S2 foliation and F2 folds were 
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printed over the stage 1 deformation, oriented more perpendicular to S1. For clarity, the cross-

section is not showing S2 foliation, except for along the Hilltop transect, where it could be 

clearly seen. In the Pliocene-present the Paria pull-apart basin has been deforming the Northern 

Range in a tensional way, reactivating reverse faults as normal faults, as well as forming new 

normal faults in the range.   
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Figures 

Figure 1: 

Figure 1: Modified from Landscapes and Landforms of the Lesser Antilles chapter by Arkle et al., 2017b. 

Showing location of Trinidad, Northern Range study site outlined in red, and known fault zones and current 

Caribbean-South American plate boundary. 
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Figure 2: 

Figure 2: Modified stratigraphic column from Algar and Pindell (1993). Modifications included updating 

formations with USGS standard symbols and only focusing on the Northern Range group from the rest of the island. 

Differing metamorphic grade can also be seen from west to east across different units, though each unit is being 

mapped as sedimentary instead of metamorphic.  
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Figure 3: 

  

Figure 3: Examples of 4 road outcrops showing S1 features in differing rock types and along different scales. (A). 

Located in Maracas Bay and is showing how a fault cuts S1 foliation. There is also a quartz vein that intruded 

during recent (~4 Ma) extension in the Northern Range. (B). S1 foliation cut by a fault along the MVL/LCR transect, 

the fault type is unknown. The gray lines perpendicular to the axial planes of S1 are S2 foliation formed from two 

different stages of compressional deformation. (C). Along the North Coast Road, from a ~35m roadcut showing S1 

foliation spaced laterally. Here the foliation in is a rock type of pelite and quartzite. (D). Along the MVL transect in 

a schistose layer of rock with boudinage quartz veins (gray lines). The quartz veins were deformed as the S1 

foliation were forming. Dashed lines show axial planes of folded S1.  
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Figure 4:  

Figure 4: Complete geologic map of the Western Northern range highlighting all data collected, transects used for 

cross sections, and previously known fault zones. Cartographic principles were used to create the map in both 

ArcGIS Pro and Adobe Illustrator. 
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Table 1: 

Table 1: Example of database created for the Maraval Road Transect showing how data was organized for 

structural analysis and for the use of ArcGIS Pro. Full table is located in the appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: 

The Maracas Bay (MB), Maraval Road (MVL) and Lady Chancellor Road (LCR) transects each have a stereonet 

that shows the S1 foliation data collected as well as any faults present along the transect. Hilltop Transect (HT) was 

separated into 3 domains to show each structure present along the transect in detail. Domain 1 includes folded 

rocks north of the Arima Fault zone with fold hinges and axial planes plotted. Domain 2 was calculated by Dr. John 

Weber to show the faulted rocks in the Fault zone and to show their kinematics. Plotted planes show the faults, 

arrows show slip vectors along each fault plane, and sigmas represent the principal strain. And lastly domain 3 is 

the north dipping limb of the homocline making up the Northern Range.  
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Figure 6: 

Full cross section of the Western Northern Range in Trinidad. The cross section is split into four transects: Maracas 

Bay, Maraval Road, Lady Chancellor Road, and Hilltop. Each transect is separated by a small orange line to 

signify that the transects are not connected, but instead that in the breaks between the transects, we are interpreting 

that the geology and deformational mechanisms remained consistent between the transects. The cross section only 

shows S1 and S3 deformation, with the exception of Hilltop, which shows all three stages of deformation: S1, S2, 

and S3.  
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