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Comparing Meiothermus ruber and Myxococcus xanthus in the Purine Metabolism 

Pathway 

Linnea Ritchie 

Bio-375 Molecular Genetics (Dr. Lori Scott) 

Background 

 The purine metabolism pathway is an essential part of an organism’s ability to make 

nucleotides. It is through this pathway that adenine and guanine are made, these molecules later 

become the bases of nucleotides, which are a key component in DNA (Westby 1974). There are 

two different routes for purine synthesis: the de novo pathway and the salvage pathway (Berg 

2002). During the de novo pathway the purine molecules are essentially built from scratch. 

While this route uses comparatively simple molecules and amino acids there is a high energy 

requirement which is why at times the salvage pathway is used instead. While the de novo 

pathway requires hydrolysis of ATP or GTP on 5 of 12 steps of the pathway, the salvage 

pathway only requires energy input on one step (Berg et al. 2002). The salvage pathway takes 

free purine bases either from degraded RNA or DNA and recycles them to make new RNA or 

DNA. These free purine bases are broken down into free guanine monophosphate (GMP) or 

adenosine monophosphate (AMP) (Koonin 2003). This allows the system to save resources. If 

more nucleic acids than needed are present in the system they can be degraded and excreted.  

 While the purine metabolism pathway as a whole is fascinating, the gene sequences I am 

concerned with are involved in the first two steps of the process, before the system differentiates 

between de novo and salvage pathways. As shown in Figure 1, the Purine metabolism pathway 

begins with Ribose-5-phosphate which is obtained from the pentose phosphate pathway (Berg et 

al. 2002). Ribose-5-phosphate is then activated into Phosphoribose-1-pyrophosphate (PRPP) via 
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the combination of ATP and PRPP synthetase (PRS). It is within PRS that we find four of the six 

gene sequences of interest. Mxan_7156, Mrub_1053, Mxan_5075, Mrub_2281 all code for (or 

are expected to code for) PRS (Kanehisa 2000).   

 In the next step of the purine metabolism pathway the PRPP interacts with 

phosphoribosyl pyrophosphate (PRPP) amidotransferase as well as Glutamine and ATP to form 

5-phosphoribosylamine (PRA) (Figure 1). I have been attempting to prove via bioinformatics 

that the Meiothermus ruber gene Mrub_2299 does in fact code for PRPP amidotransferase as 

does Mxan_1103 (Westby 1974). The purine pathway will take either the de novo synthesis or 

salvage synthesis pathway after this step depending on the abundance of PRPP. This step’s 

dependence on the concentration of PRPP makes it the rate determining step in the reaction. This 

paper will focus primarily on the first two steps of the purine synthesis pathway, before a 

distinction is made between de novo and salvage.  
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Ribose-5-phosphate

Phosphoribose-1-pyrophosphate (PRPP)

5-phosphoribosylamine

Inosine monophosphate (IMP)

Guanine monophosphate 
(GMP)

Adenosine

Pentose phosphate 
pathway

Phosphoribose-1-pyrophosphate (PRPP) synthetase 
 (PRS)
+ ATP

Phosphoribosyl pyrophosphate (PRPP) 
 amidotransferase
+ ATP
+ Glutamine

Adenylsuccinate Lyase
+ GTP

GMP synthase
+ ATP

*Rate limiting step*

Activator = PRPP
Inhibitors = IMP, GMP, AMP

PRPP in abundance - de novo synthesis
PRPP scarce - salvage pathway

*1st compound with formed purine ring*

2.4.2.14    MXAN_1103    MRUB_2299

2.7.6.1    MXAN_7156     MRUB_1053
    MXAN_5075    MRUB_2281

Multiple short steps

Xanthosine monophosphate 
(XMP)

Adenosine monophosphate 
(AMP)

Guanosine

Guanine

Adenine

6.3.4.4
1.1.1.205

6.3.5.2

3.1.3.5

2.4.2.1

3.1.3.5

2.4.2.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

  
 Figure 1: Purine Metabolism Pathway as it Relates to M. xanthus and M. ruber 

 In researching the relationship between these two bacteria I encountered problems finding a useable 

 visual representation of the pathway. Most figures were either much to complicated for the purpose of 

 this paper or they did not progress past Inosine monophosphate. I decided to create my own figure to 

 show the pathway and the location of the gene sequences in question.  
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 As shown in Figure 1, PRPP amidotransferase is the enzyme that catalyzes PRPP into 5-

phosphoribosylamine (PRA). After the synthesis of PRA in the de novo pathway seven smaller 

steps build the purine ring directly on the ribose, which is annotated as ‘ribotde’ in Figure 2 

(Berg et al. 2002). As explained earlier some steps in this pathway require energy input in order 

to perform their duty and others do not. The end product shown in Figure 2 has a completely 

formed purine ring and is called Inosine monophosphate (IMP). From this step the pathway 

branches off to form either guanine or adenine (Figure 1).  

  

 

 

 

 

 

 

 

 

 

 

 

 Figure 2: Purine Ring Formation 

 This figure shows a more chemical explanation of the events leading up to the production of Inosine  

 monophosphate (IMP). Each new component of the purine ring (starting with step 2) is added directly 

 to the ribose. The resulting IMP molecule has a fully formed purine ring and will differentiate into 

 either adenine or guanine (Image from: https://upload.wikimedia.org/wikipedia/commons/thumb/2/25/ 

 Nucleotides_syn1.svg/600px-Nucleotides_syn1.svg.png) 
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 My decision to use the bacteria Myxococcus xanthus as my reference bacteria in this 

project rose in part from my own knowledge of the organism having worked with it extensively 

for over a year. M. xanthus purine metabolism has also been studied extensively as myxospore 

formation can sometimes be triggered by the start or finish of some reactions in purine 

metabolism (Westby et al. 1974). In 1974 Westby and Tsai monitored purine metabolism in well 

nourished M. xanthus cells as well as metabolically dormant cells which were exposed to 

starvation conditions. Not only did this study confirm the locus tags of the M. xanthus gene 

sequences involved in purine synthesis but it also confirmed that the purine metabolism is 

constantly functioning, even when cells are dormant due to starvation. Because myxospores and 

their subsequent biofilms are so heavily studied there are many experiments explaining the 

function of the gene sequences in question (Westby 1974, Westby 1978, Hanson 1974).  

 Mrub_2299, Mxan_1103, Mrub_2281, Mxan_5075, Mrub_1053, and Mxan_7156 have 

all been identified by KEGG as being part of the same pathway. Their presence on the same 

steps of the same pathway was a good preliminary indicator of similarity. Using multiple 

bioinformatics tools, I have been able to confirm the similarity between these gene sequences not 

only in their amino acid structure but also in their function within the purine synthesis pathway.   

 I focused on the purine metabolism pathway because I am very interested in DNA in 

general and I wanted to know more about the process of building it. I was also curious if, since 

the structure of DNA remains fairly similar through most organisms, the process for acquiring 

the many building blocks would be different. In searching for pathways shared by M. xanthus 

and M. ruber I found that they are in many ways very different bacteria. M. xanthus is an 

extremely mobile bacterium while M. ruber is mostly sedentary. I found that while they seem to 

perform similar tasks and have similar pathways they often use different routes to reach the same 
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product. The purine pathway caught my attention partially because it was one of few pathways 

where they seemed to be somewhat similar.  

 An extensive knowledge of bioinformatics tools was necessary in order to complete my 

analysis. Not only did this speed up the process of comparing multiple sequences but it provided 

visual representation of the data which facilitated analysis. As stated earlier I focused on gene 

sequences associated with the first two steps (shown in Figure 1) of the purine metabolism 

pathway. Mxan_7156 and Mxan_5075 have been shown to code for the enzyme PRS (PRPP 

synthetase) and I compared these sequences to Mrub_1053 and Mrub_2281 in hopes of finding a 

similar function (Westby 1978). Mxan_1103 has been proven to code for PRPP amidotransferase 

and I believe that Mrub_2299 does the same (Westby 1978).  

Methods 

 For this project I used the bioinformatics tools found in the GENI-ACT system (which 

can be found here: http://www.geni-act.org/student/view_assignment/find/6fa2ae446a0244ad/ 

88178c02e87e4060/). I found very few instances where I was required to deviate from the 

instructions given on the website. Before I began, I used NCBI BLAST technology to confirm 

that there was a comparable gene sequence present in each genome. Having assured myself that I 

was indeed looking at gene sequences which had the potential to have similar functions I began 

characterizing each gene in turn.   

 I deviated slightly from the instructions while using T-Coffee (Tree-based Consistency 

Objective Function For Alignment Evaluation). Here the instructions simply instruct for ten 

sequences to be aligned to highlight conserved gene sequences. For consistency’s sake I decided 

to make six genes in each M. ruber sequence set from the same genus (Meiothermus). This 

allowed me to keep a more consistent pool of gene sequences between annotations. Similarly, M. 
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xanthus was always compared to three other bacteria in the Myxococcus genus. The difference in 

numbers is simply because only three other Myxococcus bacteria were available on the NCBI 

BLAST database.     

 While Metacyc was useful during the beginning stages of my research I did not find it 

useful in looking for previous research indicating the function of the M. xanthus gene sequences 

in question. Since M. xanthus is not a model organism like E. coli websites like Metacyc do not 

focus on it. Because of this I instead used the NCBI database to look for previous research 

involving the purine metabolism pathway. Luckily there are studies regarding proline synthesis 

and its relation to sporulation and biofilms (Westby 1974 & 1978). So while I had to think 

outside of the box in order to indicate the function of the M. xanthus genes I was still able to 

prove that my model organism had the genes necessary for this project.  

Results 

 Interestingly, there are two gene sequences in both the M. ruber and M. xanthus genome 

which code for PRPP synthetase. This could possibly indicate the occurrence of gene 

duplication. This potential duplication is interesting because it suggests that these sequences 

which are very similar to each other (see Table 1) perform different tasks and are present in 

different pathways. For instance, Mxan_5075 is also annotated as being involved in the pentose 

phosphate pathway (the product of which begins the purine metabolism pathway) and it is also 

involved in biosynthesis of secondary metabolites as well as carbon metabolism. My hypothesis 

of gene duplication is further supported by the fact that these genes are not located anywhere 

near each other on the genome. The numbers after their bacteria identifier (ex. Mxan_####) 

indicate their location on the genome. The sequences which I believe have been duplicated 
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(Mxan_7156 and Mxan_5075 as well as Mrub_1053 and Mrub_2288) are not near each other on 

the genome, which could indicate that they have more than one task within the bacteria.  

 I have several reasons to be confident in my assertion that the Meiothermus ruber gene 

sequences in question have functions similar to those of Myxococcus xanthus in the purine 

metabolism pathway. To begin, my preliminary BLAST searches where I compared the M. 

xanthus gene sequences against their (hopeful) counterparts in the M. ruber genome came back 

with very encouraging indicators. There appear to be many homologous protein-coding regions 

in M. ruber and M. xanthus. The highest E-value I encountered was 5 e (-63) (see Table 1) which 

is still very statistically significant. This indicates that these gene sequences have a similar amino 

acid sequence which is unlikely to be simply due to chance. In the case of the four sequences 

associated with EC number 2.7.6.1, when I compared sequences with the other gene sequence in 

the category (not the one they were paired with by KEGG) I got very similar data. I also 

compared Mxan_7156 & Mxan_5075 and Mrub_2281 & Mrub_1053. The M. xanthus genes 

matched with a score of 188 bits and an E-value of 4 e (-61) and the M. ruber genes matched 

with a score of 239 bits with an E-value of 2 e (-80). This would seem to further support my gene 

duplication theory. All of these gene sequences which code for the same enzyme seem to be very 

similar to each other.  
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Table 1: Evidence indicating similarity 

 * All BLAST results are the result of the amino acids of the two indicated gene sequences being  

 compared (Ex. Mrub_2299 compared to Mxan_1103 and Mrub_2281 compared to Mxan_5075) 

 

Description 
of evidence 
collected 

Mrub_2281 Mxan_5075 Mrub_1053 Mxan_7156 Mrub_2299 Mxan_1103 

Cellular 
Localization 

CYTOPLASM 

NCBI 
BLAST* 

Score: 247 bits(630) 
E-Value:9 e (-84) 

 

Score: 226 bits(575) 
E-Value: 2 e (-75) 

Score: 427 bits(1090) 
E-Value: 2 e (-149) 

 
 **See 

Mxan_7156 
column** 

Score: 272 bits(489) 
E-Value:2 e (-93) 

Score: 
192 bits(489) 

E-Value: 
5 e (-63) 

**Mxan_7156 
vs 

Mrub_2281** 
KEGG 
Pathway 

PURINE METABOLISM PATHWAY 

Pfam – 
protein 
family 

PF13793 
N-terminal domain of ribose phosphate pyrophosphokinase 

PF13537 
Glutamine amidotransferase 

domain 
E-Value: 

2.1 e (-40) 
E-Value: 

1.2 e (-51) 
E-Value: 
1 e (-45) 

E-Value: 
1.9 e (-31) 

E-Value: 
2.4 e (-22) 

E-Value: 9.8 
e (-24) 

CDD (COG 
category) 

COG0462 
phosphoribosylpyrophosphate synthetase 

COG0503 
Adenine/guanine 

phosphoribosyltransferase 
TIGRfam – 
protein 
family 

TIGR1251 
Ribose-phosphate diphosphokinase 

TIGR01134 
amidophosphoribosyltransferase 

E-Value:  
4.4 e (-117) 

E-Value:  
6.3 e (-131) 

E-Value:  
1.2 e (-105) 

 

E-Value:  
1.3 e (-79) 

E-Value:  
6.8 e (-240) 

 

E-Value:  
1.2 e (-219) 

E.C. 
number 

2.7.6.1 
 

2.4.2.14 

PDB 1DKR 
Crystal structures of Bacillus subtilis 

Phosphoribosylpyrophosphate synthetase 

1ECB 
Escherichia coli Glutamine 

phosphoribosylpyrophosphate 
(PRPP) amidotransferase 

E-Value:  
1.04586  
e (-77) 

E-Value:  
2.18684  
e (-86) 

E-Value:  
6.96043 
e (-73) 

E-Value:  
5.42333 
e (-51) 

E-Value:  
1.47261 
e (-74) 

E-Value:  
7.43275 
e (-82) 
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 Table 1 also shows the results of my Conserved Domain Database (CDD) search which 

placed both Mrub_2299 and Mxan_1103 in the same category; Adenine/guanine 

phosphoribosyltransferase. The database does stipulate that they could also code for another 

PRPP binding protein, but since both the M. ruber and M. xanthus gene sequences were placed 

in this category I still believe that this information supports my hypothesis that they perform the 

same step in the purine synthesis pathway within their respective organisms. This search also 

positioned both sequences within the same cluster of orthologous groups (COG0503). 

Mrub_2281, Mrub_1053, Mxan_5075 and Mxan_7156 were also placed in the 

phosphoribosylpyrophosphate synthetase category (which was the expected result based on 

Figure 1). These four sequences were also all placed in COG0462. This means that all genes are 

likely to belong in a similar set of orthologs to those that were aligned to build the COG model 

(Marchler-Bauer et al. 2011). This is further proof that my hypothesis is correct and Mrub_2299 

and Mxan_1103 are orthologs, as well as Mrub_2281 and Mxan_5075 & Mrub_1053 and 

Mxan_7156.  

 Furthermore, the Pfam database indicates that these six gene sequences (as paired above 

in Table 1) have the same domain; N-terminal domain of ribose phosphate pyrophosphokinase 

and Glutamine amidotransferase domain respectively. Their pairwise alignments (Figure 3A and 

3B) also indicate a significant amount of conserved amino acids between the compared 

sequences. Similarly, all three sets of genes were consistent in their TIGRfam designations. The 

gene sequences coding for PRPP synthetase (Mrub_2281, Mrub_1053, Mxan_5075 and 

Mxan_7156) were all placed within TIGR1251 (Ribose-phosphate diphosphokinase). 

Mxan_1103 and Mrub_2299 were both annotated as part of TIGR01134 

(amidophosphoribosyltransferase). Both of these names are listed as alternative names for the 
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enzymes they code for (Kanehisa et al. 2015). Unlike Pfam, TIGRfam uses full-length protein 

sequences with well understood functions. While the data gained from both databases is the 

same, the algorithms and parameters used during the search are different. This lends even more 

credence to my hypothesis since these gene segments are being connected repeatedly and 

through different search techniques.  

 

3. 1 

 

3. 2 

 

3. 3 

 

3. 4 

 Figure 3A: Pairwise Alignment for PRPP synthetase shows similarity 

 3.1 = Mrub_2281, 3.2 = Mxan_5075, 3.3 = Mrub_1053, 3.4 = Mxan_7156. Each Pairwise alignment 

 shows a high degree of similarity to ribose-phosphate diphosphokinase. Each panel shows the 

 similarities in amino acid sequence between the gene in question (bottom line in green) and the 

 selected HMM sequence (top line in blue), in this case to ribose-phosphate diphosphokinase. All of 

 the E-Values in this case were significant, meaning that there is a strong possibility that these 

 sequences are matches with Pfam13793 by more than random chance. Pfam 

 (http://pfam.xfam.org/search) created these alignments.         
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3.5 

 

3. 6 

 Figure 3B: Pairwise Alignment for PRPP amidotransferase confirms similarity 

 3.5 = Mrub_2299, 3.6 = Mxan_1103. Each pairwise alignment shows a high degree of similarity to 

 amidophosphoribosyltransferase. As in Figure 3A, the green line indicates the gene sequence in 

 question and the blue line above it represents the HMM sequence of the TIGRfam group. The large 

 amount of conserved amino acids in conjunction with the significant E-Values indicates a strong 

 probability of similar function. 

 

 My hypothesis was further supported by the KEGG (Kyoto Encyclopedia of Genes and 

Genomes) purine metabolism pathway (Figure 4). Since these genes were placed not only in the 

same pathway but assigned the same EC number (2.7.6.1 and 2.4.2.14 respectively) within that 

pathway this gave strong evidence for their shared functionality. Enzymes in different organisms 

which catalyze similar reactions are given the same EC number, since the number refers not to a 

specific enzyme but to the reaction catalyzed by the enzyme (Kanehisa et al. 2015). Their 

similarity was further supported when the bioinformatics tool ExPASy used the EC numbers to 

assign the same names to the enzymes as was expected at these two steps in the purine 

metabolism pathway (Figure 1).  
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M. ruber        M. xanthus 

 Figure 4: KEGG pathway indicates similarities between M. ruber and M. xanthus 

 This zoomed in shot of the purine metabolism pathway as provided by KEGG shows that both 

 bacteria follow a similar pathway (with similar EC numbers) in the preliminary steps of the process of 

 purine synthesis. While this similarity remains constant throughout the process only the first steps are 

 shown because they related directly to the genes being annotated.  

 

 Using the Protein Data Bank (PDB) I searched for sequence-based similarity using all of 

the gene sequences in question. The benefit of utilizing this large bioinformatics tool is that PDB 

searches for matches to the query gene segment against gene sequences with solved structures. 

According to the PDB website, solved structures are protein sequences with at least 95% 

similarity grouped together and solved by multiple experimental methods such as X-Ray, NMR 

and EM (Berman et al. 2000). This database provides further evidence for the similarity between 

these gene sequences. Mrub_2299 and Mxan_1103 were placed in the group 1ECB (Escherichia 

coli Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase) and Mrub_2281, 

Mxan_5075, Mrub_1053 and Mxan_7156 were placed in the group 1DKR (Crystal structures of 

Bacillus subtilis Phosphoribosylpyrophosphate synthetase). Utilizing this database not only 

allowed me to further confirm each gene sequence’s identity but it supported my hypothesis that 

the segments are evolutionarily related.  
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 When the gene segments being considered in this paper are lined up in orthologous gene 

neighborhoods most seem to remain surrounded by the same gene segments, though these 

segments and their functions do not seem to be consistent between M. ruber and M. xanthus 

(Figure 5). While this would have further proven my hypothesis the lack of similar operons 

between the two does not rule out their being orthologs. These gene segments can still perform 

the same tasks while at different locations on their respective chromosomes. Interestingly, the M. 

xanthus genes of interest all seem to remain surrounded by the same genes, both within the 

Myxococcus genus and in unrelated species. 

  The fact that in most cases the gene order was maintained around the gene of interest is 

also more evidence of evolutionary relatedness and possibly horizontal gene transfer. Since these 

genes do not appear to have functions involved in the purine synthesis pathway it is safe to 

exclude the possibility of them forming an operon. The possibility of an operon cannot be so 

easily excluded in the case of M. ruber, indeed preliminary evidence suggests that Mrub_2281 

and Mrub_2299 are indeed in an operon. Several genes between these two are annotated as being 

part of the purine synthesis pathway. The identity as an operon cannot be confirmed at this time 

because two genes in the potential operon are annotated as hypothetical, meaning that they may 

or may not be involved in the same pathway (Markowitz et al. 2014).  

       

Mrub_1053   

        

 

Mxan_7156 
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Mrub_2281 

 

Mxan_5075        

 

Mrub_2299 

 

Mxan_1103 

 Figure 4: Orthologous gene neighborhoods reveal consistent gene placement 

 All gene sequences (Red) seemed to remain surrounded by the same gene sequences when compared   

 to similar bacteria using JGI IMG/EDU. The one exception is Mxan_1103 which seems to be mostly 

 solitary except in the case of C. coralloides which seems to have the same sequence as part of a group. 

 The fact that the gene order is maintained across many different species presents the possibility that 

 these theoretical operons are evolutionarily related.  

 

 Furthermore, none of the gene sequences in question indicated the presence of 

transmembrane helices. As shown below in the TMHMM topology graphs (Figure 6) while in 

some cases a slight amount of red is visible (indicating the possible presence of a transmembrane 

alpha helix) it remains below the level where it definitely can be identified as being 

transmembrane. This abnormality can be explained by large amounts of hydrophobic regions 

within the protein which can give the appearance of a transmembrane alpha helix.  

 

 

 

6.1 
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 6.2 

 

 

 

 

 

 

6.3 

 

 

 

 

 

 

 

6.4 

 

 

 

 

 

 



 Ritchie 17 

 

 

 

6.5 

 

 

 

 

 

 

 

 

6.6 

 

 

 

 

 Figure 6: No transmembrane helices expected 

 6.1 = Mrub_2281, 6.2 = Mxan_5075, 6.3 = Mrub_1053, 6.4 = Mxan_7156, 6.5 = Mrub_2299, 6.6 = 

 Mxan_1103. All amino acid sequences were compared to a database which specializes in the detection 

 of transmembrane helices (TMHMM: http://www.cbs.dtu.dk/services/TMHMM/). The blue lines at 

 the bottom of the graphs which are sometimes hard to see represent amino acids predicted to remain 

 inside of the cell in cytoplasm. In graph 3.3 and 3.6 a red section of transmembrane proteins is 

 depicted however since they do not reach the pink line across the top of the graph they are not 

 considered to be transmembrane.  
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 I used the bioinformatics tool LipoP to support the location of the gene segments within 

the cell. LipoP is used to predict the presence of any lipoproteins within the gene segment which 

were embedded in the membrane. This database is able to discriminate between lipoprotein 

signal peptides as well as other signal peptides and n-terminal membrane helices in gram-

negative bacteria (Juncker et al. 2003). Using this resource, I got their best prediction for the 

location of my gene sequences (every single one was labeled as residing in the cytoplasm) as 

well as their predictions for any possible cleavage sites (none were predicted). Supporting 

LipoP’s prediction of a cytoplasmic gene sequence, Psort-B predicted overwhelmingly that each 

gene sequence resided within the cytoplasm. Psort-B is able to predict a protein’s location by 

searching the gene sequence for hydrophobic alpha helices which can be indicative of membrane 

bound regions (Yu et al. 2010). Each gene sequence was given a score which indicates the 

certainty of the gene segment’s location. Most genes had a cytoplasmic score of 9.97 with no 

score dropping below 9.26. Psort also allowed me to confirm that, despite the slight presence of 

red in the TMHMM graph of Mxan_1103, there are no predicted regions of gene segment 

presence anywhere other than the cytoplasm (Mxan_1103 received a cytoplasmic score of 9.97).  

 SignlP is used in a similar manner as LipoP to locate proteins whether inside or outside of 

the cell based on similar known peptides. These peptides, if present, direct the cell toward the 

cell membrane so that the segment can either adhere to the membrane or traverse it completely 

(SignalP). Since no gene segment annotated in this paper was predicted to go through the 

membrane I did not expect to see any areas of contact between the gene segment and the cell 

membrane, not any cleavage sites. As shown in Figure 7 no signal peptides or cleavage sites are 

predicted, although the Mxan_1103 graph does seem to indicate that a signal peptide (S-score) 

rises above the Y-score which is the geometric average of the raw cleavage score and the signal 
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peptide score (C and S scores). Just as with the TMHMM graphs in Figure 3 this very slight 

derivation from the expected result can again be explained by larger amounts of hydrophobic 

regions of DNA which could give the appearance of a signal peptide without actually traversing 

the membrane.  
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Figure 7: No hydrophobic spikes indicates no membrane attachment. 

While Mxan_1103 exhibits a small spike in the graphical representation no gene sequence is predicted to have 

signal peptides or cleavage sites. This is expected since all other bioinformatics tools predicted the gene 

sequences to reside entirely in the cytoplasm.  

 

 The last bioinformatic tool used to compare gene segment location within a cell was 

Phobius. This database can predict both TMHMM and signal peptide regions within a protein if 

given the correct conditions. Because none of the genes of interest seem to contain 

transmembrane helices nor signal peptides Phobius was unable to predict anything when given 

the amino acid sequences.  

Conclusion 

    The evidence gained from multiple bioinformatics tools supports my hypothesis about the 

shared functionality of Mrub_2299 and Mxan_1103 as well as Mrub_1053, Mxan_7156, 

Mrub_2281 and Mxan_5075. Among many other reliable sources of information both sequences 

have the same EC number which indicates that they catalyze the same chemical reactions. This is 
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an excellent indication of their similarity. This combined with the fact that each database I 

searched placed all gene sequences in the same families or groups (Pfam: N-terminal domain of 

ribose phosphate pyrophosphokinase & Glutamine amidotransferase domain, COG Category: 

phosphoribosylpyrophosphate synthetase & Adenine/guanine phosphoribosyltransferase, 

TIGRfam: ribose-phosphate diphosphokinase & amidophosphoribosyltransferase, PDB: 

Phosphoribosylpyrophosphate synthetase & Glutamine phosphoribosylpyrophosphate (PRPP) 

amidotransferase) makes it very easy to deduce that my hypothesis is correct. Mrub_2281 and 

Mrub_1053 are similar in structure and function to Mxan_5075 and Mxan_7156 and likely code 

for the enzyme Phosphoribose-1-pyrophosphate synthetase. Mrub_2299 is similar in both 

structure and function to Mxan_1103 and likely is responsible for the production of 

Phosphoribosyl pyrophosphate amidotransferase.  
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