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Functional studies of the E. coli proC and a putative ortholog Mrub_1345 

 

Introduction 

 

Proline biosynthesis   

Proline is an important amino acid of proteins. It is unique because it is the only amino 

acid with a side chain connected twice to the protein backbone, forming a five-membered ring 

(Betts and Russell, 2003). It is often found where the polypeptide chain must change direction, 

and it can introduce kinks into α-helices. In addition, there are many published examples in both 

prokaryotes and eukaryotes of proline’s importance in physiological processes, such as being 

used as an energy source, as an osmolyte for stress-protection and in redox control (i.e., 

scavenger of free radicals), among other functions. Proline accumulation was originally 

implicated in osmotic stress tolerance in bacteria (Christian, 1955a,b) and it has been suggested 

that proline functions as a compatible solute that enables the cytoplasm to remain hydrated under 

conditions of high external osmolarity. For a recent review of proline biosynthesis and uses see 

Fichman et al. (2015).  

 

Proline biosynthesis can occur via two pathways. The first and most common pathway 

begins with glutamate, while the other begins with arginine (Deutch et al., 1982; Smith et al., 

1980). The glutamate pathway is the main mechanism of proline biosynthesis in bacteria, 

whereas eukaryotes use this route predominantly under stress. The glutamate to proline pathway, 

as seen in Figure 1 for E. coli K12, is a 4-step pathway, which was first proposed by Vogel and 

Davis (1952). The pathway has been confirmed in many bacteria, including E. coli (see reviews 

Adams and Frank, 1980; Csonka and Leisinger, 2007; and Fichman et al., 2015). Fichman et al. 

(2015) used the SEED database to analyze how different organisms synthesize proline, which 

involved comparing 56 archaebacteria, 821 eubacteria and 13 eukaryotes. Of the genomes 

analyzed, 8 archaeal, 681 eubacterial (including E. coli) and all complete eukaryotic genomes 

have at least one ortholog for each of the three enzymes of the most common glutamate pathway. 

The level of proline biosynthesis is invariant regardless of proline starvation or excess (studies 

reviewed in Csonka and Leisinger, 200. Thus, proline is not subject to transcriptional control, as 

are most other amino acids. Feedback inhibition of the first enzyme in the pathway appears to be 

the only control mechanism.  

 

Pyrroline-5-carboxylate reductase (P5CR/ProC) 

 

The last reaction in the proline biosynthesis pathway is 1-pyrroline-5-carboxylate and NAD(P)H 

to proline and NAD(P)+, which is catalyzed by NADPH-dependent pyrroline-5-carboxylate 

reductase (P5CR or ProC in E. coli; EC 1.5.1.2). E. coli K12 ProC was partially purified and 

characterized by Rossi et al. (1977) and estimated to be 320,000 D in size. E. coli ProC was 

subsequently purified and the gene proC cloned by Deutch et al. (1982). Its monomeric 

molecular weight determined to be 28,112 D, corresponding to 269 amino acids in length. The 

revised multimeric molecular weight was 280,000 D. The E. coli K12 MG1655 proC gene is 810 

base pairs in length. It is located at map position 404,835-405,644 (8.72 centisomes, 31°), and its 

locus tag is b0368 as retrieved from the database Ecocyc (Keseler et al. 2013). Originally  
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Figure 1. Proline biosynthesis pathway: The biosynthesis of L-proline in E. coli K12 

MG1655 involves four steps beginning with L-glutamate. The first step reduces of 

L-glutamate to glutamate semialdehyde in two consecutive enzymatic steps, catalyzed by 

glutamate 5-kinase and glutamate-5-semialdehyde dehydrogenase. The next step is an 

exergonic spontaneous dehydration reaction, converting L-glutamate γ-semialdehyde to 

pyrroline-5-carboxylate. In the final step, the pyrroline derivative is reduced to L-proline, 

which is catalyzed by the NADPH-dependent pyrroline-5-carboxylate reductase. Enzymes 

in bold have been experimentally confirmed. Image taken with modification from Ecocyc, 

from 

http://ecocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=PROSYN-PWY# 
  

 

identified in Neisseria meningitides and Streptococcus pyogenes (Nocek et al, 2005), P5CR 

consists of two domains, an N-terminal NADP-binding Rossmann fold and a C-terminal 

pyrroline-5-carboxylate binding site. As predicted by the Pfam database ((Finn et al., 2014, Finn 

et al., 2016); E. coli K12 ProC has the same functional domains: 1) F420_oxidored between 

amino acids 4-99 as the binding site of NADH/NADPH; and 2) the P5CR domain between 

amino acids 163-266 as the 1-pyrroline-5-carboxylate binding/catalytic site. Fichman et al. 

(2015) created a consensus sequence derived from P5CR of various organisms, including E. coli, 

using ConSurf server and the ConSeq program, and superimposed it onto the primary sequence 

of Arabidopsis thaliana P5CR and the 3D structure of human P5CR (aka PYCR1, Meng et al., 

2006). This allowed for the determination of highly conserved amino acids in ProC, as well as 

determined which amino acids are predicted to be functional or structural, and which are located 

on the surface or embedded in the protein. These predictions helped inform which amino acids 

were studied in our functional genomics experiments. The multiple sequence alignment tool 

T-Coffee (Notredame et al., 2000). In conjunction with the program Weblogo Weblogo (Crooks 

et al., 2016) and the HMM logo of PFAM (Finn et al., 2014, Finn et al., 2016) were additional 

resources used in this investigation to identify highly conserved amino acids in E. coli proC and 

Mrub_1345. 

 

We are using E. coli K12 MG1655 as a reference organism in the study of proline 

biosynthesis in M. ruber DSM1279 for these reasons: 1) the extensive research on proline 

http://ecocyc.org/gene?orgid=ECOLI&id=PYRROLINECARBREDUCT-MONOMER
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biosynthesis in E. coli (see reviews in Fichman et al., 2015; Csonka and Leisinger, 2007); 2) the 

availability E. coli K12 null strains called the Keio Collection (Baba et al., 2006); 3) the 

availability of E. coli K12-dedicated database Ecocyc (Keseler et al., 2013); 4) the availability of 

an E. coli complementation assay and applicable resources, which were provided through the 

NSF-funded online resource GENI-ACT (Dr. Kathryn Houmiel, GENI-ACT Program 

Coordinator, Seattle Pacific University, Personal Communication; Dr. Derek Wood, Seattle 

Pacific University, Personal Communication; GENI-ACT at http://geni-science.org/). 

 

Meiothermus ruber DSM1279. 

 

Meiothermus ruber is a Gram-negative eubacteria belonging to the phylum 

Deinococcus-Thermus. The order Thermales, which is housed within the Thermus group and 

consists of 6 genera (Thermus, Marinithermus, Meiothermus, Oceanithermus, Rhabdothermus, 

and Vulcanithermus), is notable for containing thermophilic and hyperthermophilic genera 

possessing thermostable enzymes(Albuquerque and Costa, 2014]. M. ruber is one of eight 

currently known species in the genus Meiothermus (Euzeby, 1997). The genus name derives 

from the Greek words ‘meion’ and ‘thermos’ meaning ‘lesser’ and ‘hot’ to indicate an organism 

in a less hot place [Nobre et al., 1996; Euzeby, 1997]. It lives in natural hot springs and artificial 

thermal environments; it has an optimal growth condition of 60oC and a growth range of 

35-70oC. The epithet “ruber” refers to the red pigment it produces.  

 

The Meiothermus ruber DSM1279 genome was sequenced through a collaboration 

between the Joint Genome Institute and Leibniz-Institut DSMZ (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH) called the Genomic Encyclopedia of Bacteria and 

Archaea (GEBA) project, the goal of which is to systematically fill in gaps in sequencing along 

the bacterial and archaeal branches of the tree of life (Wu et al., 2009). Among the many 

projected benefits of the GEBA project are novel gene discovery, the identification of novel 

biochemical processes, and a better understanding of the processes underlying the evolutionary 

diversification of microbes (e.g., lateral gene transfer and gene duplication). The complete 

genome consists of over 3 million base pairs, over 3000 protein-coding genes and 53 RNA 

genes; the genome has 63.4% GC content (Tindall et al., 2010). A genome statistics summary is 

provided in Table 1, which was taken directly from Tindall et al. (2010, Table 3). Many features 

make M. ruber an interesting organism to study; for example, its tolerance to high growth 

temperatures. A few early bioinformatics studies have identified non-traditional biosynthetic 

pathways (e.g., lysine and arginine biosynthesis). The study of proline biosynthesis and 

regulation is interesting because of proline’s role as an osmolyte for stress-protection.   
 

Bioinformatic analysis of Mrub_1345/Gene ID 646672805 

 

The bioinformatics evidence predicting that the open reading frame Mrub_1345 (GenBank 

Gene ID 646672805) encodes pyrroline-5-carboxylate reductase (aka ProC) was originally 

performed via automated annotation by Tindall et al. (2010), which was subsequently confirmed 

by manual annotation (Wills and Scott, 2015). Mrub_1345 is 783 nucleotides and 260 amino 

acids in length; it is located at map position 1378760-1379542. Among other similarities to E. 

coli ProC, Mrub_1345 is assigned to the same TIGRfam family (Haft et al., 2001), has the same 

two PFam domains and it belongs to the same COG (e.g., tigrfam00112: pyrroline-5-carboxylate  
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Table 1.  Genome statistics from the Meiothermus ruber genome 

(original table from Table 3 of Tindall et al., 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reductase; pfam03807/NADP oxidoreductase coenzyme F420-dependent; 

pfam14748/P5CR_dimer; COG0345: Pyrroline-5-carboxylate reductase, respectively). Further 

evidence of an orthologous relationship is from a BLASTp (Altschul, et al., 1990) comparison 

between E. coli ProC and M. ruber Mrub_1345, which resulted in an E-value of 1e-40, an 

Identities score of 33% and a Positive score of 53% (Wills and Scott, 2015). Both proteins are 

localized to the cytoplasm, as determined by the lack of transmembrane helices and signal 

peptides. The bioinformatics tools used for these analyses included TMHMM (Krogh et al., 

1998; Krogh et al., 2001), PSORTb (Yu et al., 2010), SignalP (Peterson et al., 2011), LipoP 

(Juncker et al., 2016) and Phobius (Kall et al., 2004; Kall et al., 2007).  

 

Complementation as a functional genomics tool 

  

While bioinformatics tools can predict the function of gene/protein using computational 

means, functional genomics uses experimentation to determine function. In our lab, M. ruber 

open reading frames (ORFs) are cloned into the pKt1 expression vector via a ligase independent 

cloning process developed by Dr. Kathryn Houmiel (Seattle Pacific University, personal 
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communication; protocol taken from GENI-ACT at http://geni-science.org/). The pKt1 vector 

(Figure 7) contains the sacB gene within the cloning site, which is integrated downstream of an 

arabinose inducible promoter. Components of the arabinose operon are the araC and the araBAD 

promoter, which allows for transcriptional activation of an inserted ORF in the presence of 

arabinose. A pKt1 containing a putative M. ruber gene was transformed into a corresponding 

null strain from the Keio Collection (Baba et al., 2006). In these null strains, open-reading frame 

coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites 

to create in-frame deletions upon excision of the resistance cassette. These mutants provide a 

resource for the systematic analyses of unknown gene functions and gene regulatory networks 

and for genome-wide testing of mutational effects in a common strain background, E. coli K-12 

BW25113. Clones are screened on medium with or without supplemental arabinose or proline to 

identify those that can restore the strain to prototrophy. One published example of using the Keio 

strains for a complementation assay of P5CR is the oomycete plant pathogen Phytophthora 

nicotianae (Ambikapathy et al., 2002). Complementation of a Keio strain defective in 

the P5CR protein by the P. nicotianae P5CR cDNA confirmed that the gene encoded a 

functional P5CR. The proC genes of three species of Agrobacterium have been tested using the 

pKt1 system (Brad Goodner, Hiram College, Hiram, OH; personal communication; protocol 

taken from GENI-ACT at http://geni-science.org/).  

 

Site-directed mutagenesis as a functional genomics tool 

 

Site-directed mutagenesis (SDM) is a useful technique for exploring the structure and 

therefore biological activity of DNA, RNA, and protein molecules, since structure and function 

are interconnected and a change to structure can induce changes in function (for reviews see 

Smith, 1982; Plapp, 1995; Betts and Russell, 2003). It is also commonly called site-specific 

mutagenesis or oligonucleotide-directed mutagenesis and has been practiced since about 1980. In 

its simplest form, SDM involves the deletion of a segment from a circular virus, bacteriophage or 

recombinant DNA, followed by religation of the shortened DNA, and subsequent genetic 

complementation analysis in which the specifically shorted DNA fails to complement a 

genetically-mapped defective gene obtained by conventional mutagenesis (Smith, 1982). 

Through the years, many approaches have been developed. In this project, two PCR-based 

strategies, Q5 developed by New England Biolabs and QuikChange developed by Stratagene, 

were employed to make specific amino acid substitutions for the purpose of identifying essential 

or critical residues for catalysis and ligand binding. General acids, general bases and catalytic 

nucleophiles seem to be the most essential residues in an active site as they directly participate in 

the formation and breaking of covalent bonds (Peracchi, 2001). Alanine-scanning, the systematic 

substitution of potentially critical amino acids with alanine has proven especially powerful in 

determining the role of sidechain functional groups at specific positions (Morrison and Weiss, 

2001; Betts and Russell, 2003). Alanine is a non-polar, uncharged amino acid with a small 

methyl R group. As described by Betts and Russell (2003), “[alanine] is probably the dullest 

amino acid” and it is commonly found in noncritical positions in the polypeptide sequence. It 

rarely seems to play a role in substrate recognition or specificity.  

The usual approach of measuring the impact of mutations on protein function is via 

enzyme kinetics (e.g., the determination of the Kcat and Km for a reaction) (Peracchi, 2001). 

While no systematic mutational studies have been applied to proC in E. coli K12 or M. ruber, 
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Perez-Arellano et al. (2006) induced a series of mutations in glutamate-5-kinase (GK) of E. coli 

K12, the first step of proline biosynthesis. Among other outcomes, the results supported the 

functional roles of K10, K217, and T169 in the catalysis and ATP binding; the roles of D148 and 

D150 in glutamate binding at the active site; and the roles of D148 and N149 in proline binding.  

 

Precautions in interpreting outcomes of SDM must be considered, however. Peracchi 

(2001) and Plapp (1995) describe examples of mutations in “essential” residues that generally 

did not annihilate activity and sometimes leave most of the catalytic power of the enzyme intact. 

Also, the criterion that an amino acid residue is essential if its substitution totally inactivates is 

obsolete (Plapp, 1995). While mutagenesis of residues involved in catalysis has highlighted the 

interplay between different catalytic devices and strategies, it has also softened the distinction 

between essential and nonessential groups and demonstrating the functional plasticity of enzyme 

active sites (Peracchi, 2001). The GK example described above illustrates this issue. Except for 

the D150A mutant, all the other 13 mutants were active to some degree as compared to the 

wild-type GK (Perez-Arellano et al., 2006). However, activity was less than 1% of wild-type for 

the K10, N149, D150, D170 and K217 mutants.   

 

Previous functional genomics work within the Meiothermus ruber genome analysis project 

Early work in this lab demonstrated the feasibility of expressing M. ruber ORFs in an 

auxotrophic Keio E. coli host, as well as the ability to discern activity levels. For example, 

several M. ruber ORFs predicted to encode enzymes in arginine, lysine and histidine 

biosynthesis have been confirmed as orthologs of E. coli genes. Figure 2 shows the 

complementation assay for the Mrub_1080-1079/pKt1 transformed into a Keio E. coli proB null 

strain. Mrub_1080 and Mrub_1079 are adjoining ORFs predicted to be orthologs of E. coli proB 

and proA, respectively. ProB and ProA are the enzymes catalyzing the first two steps in proline 

biosynthesis, respectively (See Figure 1), and appear to form a functional complex critical to the 

activity of both enzymes (Hayzer and Moses, 1978; Leisinger, 1996). As previously observed in 

E. coli (Deutch et al., 1984; Leisinger, 1996), proB and proA constitute an operon with a single 

promoter proximal to proB. In M. ruber, the putative orthologous genes Mrub_1079 and 

Mrub_1080 are predicted to be an operon due to their adjacent position and similar 

transcriptional orientation in the genome.  

 

Functional complementation has been observed between E. coli proB and a proB74 mutant 

individually transformed into S. cerevisiae proB/pro1 mutant strain (Orser et al., 1998). In our 

system, E. coli proB and E. coli proA readily complemented their respective null strains on both 

minimal and minimal supplemented with arabinose. Mrub_1080/pKt1 and Mrub_1079/pKt1 

weakly complemented their respective null strains after an extended incubation period on 

minimal with arabinose. We hypothesized that the weak growth response is due to 

incompatibility in the interspecies complex formed between the E. coli and M. ruber proteins. 

The Mrub_1080-1079 construct also weakly complemented both the Keio E. coli proB and proA 

auxotrophic strains. The addition of an E. coli Shine Delgarno sequence upstream of proA in the 

Mrub_1080-1079 construct, did not enhance complementation. Thus far, complementation of all 

Mrub genes tested requires arabinose induction; extending the incubation time from the usual 

two days to four days has thus far resulted in identifying weaker complementation outcomes for 

M. ruber genes grown on minimal with arabinose.   
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In an initial mutagenesis study of proC, E. coli proC (positive control), Mrub_1345, E. coli 

proC Gly11Asp mutant and Mrub_1345 Gly9Asp mutant were cloned separately into the pKt1 

expression vector and transformed into the Keio E. coli proC null strain JW0377-1. 

Glycine/Gly/G is a small amino acid with a hydrogen as its side chain. It is hydrophobic and 

often burired inside the protein core. According to Schulze-Gahmen et al. (1996), glycines play a 

distinct functional role, such as using its backbone to bind to phosphates, which means that 

substituting glycine for any other amino acid could have drastic impact on a protein’s function. 

Gly17 and Gly19 in A. thaliana proC were identified by Fichman et al (2006) as highly 

conserved among prokaryotes and eukaryotes, and possessing a critical structural function. 

Therefore, these residues were predicted to be critical to NAD(P)H binding (Figure 3, Panel A). 

Panel B of Figure 3 shows a PFam HMM logo (Finn et al., 2014, Finn et al., 2016) for the 

NADPH binding domain of P5CR (PF03807), which supports the Fichman et al. (2015) findings. 

A Weblogo (Crooks et al., 2004) constructed from species within the Deinococcus-Thermus 

phylum (Panel C, Figure 3), which includes M. ruber, shows the corresponding Gly7 and Gly9 

as highly conserved. These positions correspond to Gly11 and Gly13 in E. coli proC (data not 

shown). 

Figure 2. An Mrub_1080-1079 construct weakly but successfully complemented a 

Keio E. coli proA auxotroph. Unless otherwise noted, the Keio E. coli proA auxotroph 

is the host strain for all samples. Panel A: 1) Wild-type E. coli K12; 2) Keio E. coli 

proA auxotroph; 3) pKt1; 4) E. coli proBA in pKt1; 5) Mrub_1080-1079 in pKt1; 6) 

empty; Panel B: 1-5 are individual isolates of Mrub_1080-1079 in pKt1; sector 6 is 

empty. 
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It was predicted that a Gly to Asp mutation would result in loss of function for proC due 

to their differing chemistries and function. Aspartate/Asp/D has a large charged side chain that is 

polar, and aspartates are typically located on the surface of proteins. According to Betts and 

Russell (2003) aspartate is frequently involved in protein active or binding sites due to its 

negative charge and it ability to interact with positively charged R groups and non-protein atoms. 

Surprisingly, both the wild-type and mutant G→D E. coli clones complemented on minimal and 

minimal with arabinose, while the wild-type and mutant G→D M. ruber clones complemented 

only on minimal supplemented with arabinose (Figure 4). We hypothesized that the difference in 

optional growth temperature between E. coli and M. ruber (37oC and 60oC, respectively) might 

negatively impact the function of M. ruber genes in the E. coli background, which could be 

Figure 3. Consensus sequences of the NH2-terminus of the NADPH binding domain 

of P5CR reveals the two highly conserved glycine (G) residues. Panel A - ConSurf 

sequence (Panel A) (Fichman et al., 2015); Panel B - Pfam PF03807 HMM logo 

((Finn et al., 2014, Finn et al., 2016); and Panel C - Weblogo (Crooks et al., 2004). 

The Weblogo was generated from species in the Deinococcus -Thermus phylum 

only. In Panel A, black boxes denote conserved amino acid residues that are also 

indicated for human P5CR. Lower case letters mean: e = exposed amino acid; b = 

buried amino acid.  
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Figure 4.  Mrub_1345 is orthologous to E. coli proC, and neither a Gly9Asp in 

Mrub_1345 or Gly11Asp in E. coli proC demonstrated a loss of function in the 

complementation assay. Unless otherwise noted, the Keio E. coli proC auxotroph is the 

host strain for all samples. Far left plates are minimal media; middle plates are minimal 

+ arabinose; far right plates are minimal + proline. Panel A. Sector 1) wild-type E. coli 

K12 strain; 2) Keio E. coli proC null strain; 3) pKt1; 4) E. coli proC+/pKt1; 5-7) E. coli 

proC Gly11Asp mutant/pKt1; 8: empty sector. Panel B. 1) wild-type E. coli K12 strain; 

2) Keio E. coli proC null strain; 3) pKt1; 4) E. coli proC+/pKt1; 5) Mrub_1345/pKt1; 

6-8) Mrub_1345 Gly11Asp mutant/pKt1.  
 

compensated by arabinose induction. Consequently, we confirmed that Mrub_1345 encodes 

pyrroline-5-carboxyate reductase via complementation, but we were unable to detect a loss of 

function for the mutants under these conditions. 

 

In this project, additional amino acids predicted to be functionally important to ProC 

were identified by utilizing at least two of the consensus sequences described above. 

Summarized below are descriptions of the roles of these amino acids to protein function, as 

described by Betts and Russell (2003). 

 

• Arginine (R) is a large positively charged polar amino acid. It tends to be on the exterior of 

the protein, but its amphipathic nature allows it to be buried in the protein. Arginine form a 
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stabilizing hydrogen bond via a salt-bridge with a negatively charged aspartic acid or 

glutamic acid.  

• Histidine (H) is a polar amino acid, but it substitutes poorly with any other amino acid. It can 

move protons on and off of the side chain, which makes it a good residue as the protein 

functional center. Histidines are the most common amino acids in protein active or binding 

sites. Histidine can rarely be exchanged for other amino acids. 

• Threonine (T) can reside both within the interior of a protein or on the protein surface, and is 

commonly in protein functional centers. The hydroxyl group is fairly reactive, and can form 

hydrogen bonds with a variety of polar substrates. 

• Tyrosine (Y) is usually buried in protein hydrophobic cores. A common role for tyrosines is 

phosphorylation by protein kinases. In this context, substitutions or loss of tyrosine is rarely 

tolerated due to the specificity of tyrosine kinases (Hanks et al., 1988).  

• Proline (P) is unique in that it is the only amino acid with a side chain is connected to the 

protein backbone twice, forming a five-membered ring. It is often found where the 

polypeptide chain must change direction. It can also introduce kinks into α-helices. 

 

The Pfam HMM logo, Weblogo and the predictions from Fichman et al. (2015) did not 

always agree on the degree of conservation for a particular residue, however. For example, 

Fichman et al. (2015) and the Weblogo of 10 Deinococcus-Thermus species were used to predict 

that Arg239 (#) and Arg252 (*) in Mrub_1345 (Figure 5, Panels B and C) and Arg249 in E. coli 

proC (Weblogo not shown) are highly conserved, but the Pfam HMM logo suggested only 

marginal conservation of both residues in Mrub_1345 (Figure 5, Panel A). E. coli proC does not 

have an analogous residue to Mrub_1345 Arg252. Despite these issues, 7 amino acids in both 

Mrub_1345 and E. coli proC were tested in this project, using a combination of base-pair 

substitutions and deletion mutations (see Table 1). An attempt was made to mutate the analogous 

residues in both E. coli proC and Mrub_1345, but that was not always achieved.  

 

The same three sequential amino acids were deleted in both E. coli proC and Mrub_1345. 

It was hypothesized that deletions of highly conserved amino acids might cause greater damage 

to the protein, especially if they were positioned sequentially. In Mrub_1345, the PAY residues 

beginning at position 169 and the same residues in E. coli proC beginning at position 176 were 

deleted, first the P, then PA and then PAY. All three consensus sequences suggested a high 

degree of conservation for this region (Figure 6). Serindipotously, a substantial deletion of the 

P5CR domain was obtained for both Mrub_1345 and E. coli proC as unintended products of 

PAY mutagenesis, as was a10-base pair duplication of Mrub_1345. All three of these mutants 

were tested for complementation. 

 

 

Purpose of this study 

 

This investigation highlights how the functional study of genes from the thermophile M. 

ruber can be performed using the Keio E. coli null strains (Baba et al., 2006) and pKt1 

expression vector (Dr. Kathryn Houmiel, Seattle Pacific University; houmik@spu.edu) in a 

complementation assay (Dr. Derek Wood, Seattle Pacific University; GENI-ACT at 

http://geni-science.org/). We applied specific bioinformatics tools (collected under the online 

mailto:houmik@spu.edu
http://geni-science.org/
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GENI-ACT platform) and the complementation assay to determine the function of Mrub_1345. 

In addition,  

 

 

 

 

 

 

 

 

 

 

 

 

this 

investigation tests the feasibility of using this complementation assay as an initial indicator of 

potential loss-of-function mutations derived by site-directed mutagenesis of highly conserved 

amino acids. The labor-intensive and costly process of measuring enzyme activity via enzyme 

kinetics limits our ability to use this standard approach in our research lab and in undergraduate 

research lab courses. We hypothesized that Mrub_1345 encodes the enzyme 

pyrolline-5-carboxylate reductase (aka P5CR or ProC), the last step in proline biosynthesis. We 

also propose that mutating specific R, T, Y, P and A residues in ProC, either by amino acid 

substitution (usually alanine substitution) or deletion through site-directed mutagenesis, would 

negatively impact the function of ProC, a condition that could be observed by the Keio E. coli 

complementation assay. 

Figure 5: The COOH-terminus of the P5CR domain contains several highly 

conserved amino acids, two corresponding R are identified by “#” across the 

three consensus sequences. Panel A – a portion of the Pfam HMM logo for 

PF14748 (Finn et al., 2014, Finn et al., 2016); Panel B - Weblogo (Crooks et 

al., 2004) for 10 species within the Deinococcus-Thermus phylum including 

Mrub_1345; Panel C – a portion of Figure 6 from Fichman et al., 2015, where 

maroon means highly conserved and lower case letters mean: e = exposed 

amino acid; b = buried amino acid; f=predicted functional amino acid; and s = 

a predicted structural amino acid. 
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Figure 6. The PAY region of proC shows high conservation, based on the 

Pfam Hmm logo PF14748, Fichman et al (2015) and 10-species Weblogo. 

Panel A – a portion of the Pfam HMM logo for PF14748 ((Finn et al., 

2014, Finn et al., 2016); Panel B – a portion of Figure 6 from Fichman et 

al. (2015) of A. thaliana proC, where lower case letters mean: e = exposed 

amino acid; b = buried amino acid; f=predicted functional amino acid; and 

s = a predicted structural amino acid. Panel C – Weblogo (Crooks et al., 

2004) for 10 species within the Deinococcus-Thermus phylum, including 

Mrub_1345. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Materials and Methods:  

 

Materials. 

Reagents and bacterial media were purchased from Fisher Scientific. Bacterial genomic 

DNA isolation kit, the High-Speed Plasmid Mini Kit and PCR/Gel extraction mini kit were 

purchased from IBT Scientific. Two site directed mutagenesis kits were used in this project: the 

Q5 site-directed mutagenesis kit from New England Biolabs and the Agilent QuikChange 

mutagenesis kit. PCR primers were purchased from Integrated DNA Technologies (Coralville, 

IA). PCR was performed using the ProMega: GoTaq® Green Master Mix kit. Sanger DNA 

sequencing was provided by the Iowa Institute of Human Genetics, Genome Division, University 

of Iowa (Iowa City, IA). The Keio strain JW0377-1 (Baba et al.,2006) and E. coli K12 1655 were 

purchased from the Yale E. coli Stock Center. M. ruber was provided by the ATCC (ATCC 

Number 35948). The pKt1 plasmid (Figure 7) was provided by Kathryn Houmiel, GENI-ACT 

Program Coordinator, Seattle Pacific University, houmik@spu.edu).  
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Methods:  

Cloning of proC. Mrub_1345 and E. coli proC (locus tag b0386) were cloned into pKt1 

vector using a ligase independent cloning protocol described on the online resource GENI-ACT 

(http://geni-science.org/), which replaces the sacB with either an E. coli proC or Mrub_1345. 

Briefly, a 12-15 nucleotide region of DNA lacking thymine and containing a not1 restriction site 

was engineered into the multiple cloning site of the vector pKt1 (K. Houmiel, personal 

communication). The complementary sequence was engineered onto the PCR primers (see Table 

2) used to amplify Mrub_1345 and E. coli proC from the respective genomic DNA. PKt1 was 

linearized with not1 restriction enzyme, which cleaved at sites on either side of the 1.4 Kbp sacB 

gene. This created a 3.8Kbp pKt1fragment that was subsequently purified via agarose gel 

electrophoresis and gel extraction. The 3.8Kpb pKt1 and purified proC PCR product were treated 

with T4 DNA polymerase mixture that contained a single nucleotide (dTTP for pKt1 or dATP 

for proC PCR). Under these conditions, T4 DNA polymerase digested the DNA in the 3’→5’ 

direction until the first specified nucleotide (A for the PCR and T for the pKt1) was reached. The 

polymerase subsequently idled as the dTTP or dATP were incorporated and then excised 

Figure 7. The pKt1 map. The expression vector pKt1 was developed from pBTB 

backbone modified to contain ligation independent cloning homology regions and 

the sacB gene between the EcoRI and XbaI sites. The incorporation of the araC 

and pBAD promoter regions from the arabinose operon allows for transcription 

induction in the presence of arabinose. PKt1 was created and provided by 

Kathryn Houmiel, GENI-ACT Program Coordinator, Seattle Pacific University. 
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repeatedly. In this way, long single stranded complementary regions on the ends of the pKt1 

fragment and the proC PCR products were produced. The proC PCR sample is combined with 

the 3.8 Kbp pKt1 fragment, allowing the two to hydridize, which were then transformed into an 

E. coli K12 MG1655 strain. Once inside the host cell, the host provided DNA ligase to seal the 

final phosphodiester bonds of the recombinant proC/pKt1 molecule. One deviation from the 

GENI-Science protocol was the transformation step. PKt1 recombinants were transformed into 

host cells as described by Chung et al. (1989). Prior to performing the complementation assay, 

the sequencing of each recombinant pKt1 strain was confirmed by Sanger sequencing. 
 

Table 2.  Primers used in this study 

NAME PRIMER SEQUENCE 

Ligase-independent Cloning 

E. coli proC-F 

5’-CGA CAA GAG CGG CCG CAT GGA AAA GAA AAT 

CGG-3’ 

E. coli proC-R AAC ACC AAG CGG CCG CCA TCA GGA TTT GCT GAG 

Mrub1345-F CGA CAA GAG CGG CCG CAT GAA ATT GGC TAT CG 

Mrub1345-R AAC ACC AAG CGG CCG CGA AGG ACG AAT AGA TA 

Primer 5015 pKT specific F TCT GAG GCT CGT CCT GAA T 

Primer 5016 pKT specific R TGA CGC TTT TTA TCG CAA CTC 

Agilent QuikChange SDM 

Mrub_proC_G9D-F GCT CTT ACC CAT CTT GTC TAC ACC CAC GAT AGC 

Mrub_proC_G9D-R GCT ATC GTG GGT GTA GAC AAG ATG GGT AAG AGC 

Ecoli_proC_G11D_F 

TGG CTT TTC CCA TAT TGT CGC AGC CAA TAA AAC 

CG 

Ecoli_proC_G11D_R 

CGG TTT TAT TGG CTG CGA CAA TAT GGG AAA AGC 

CA 

Mrub_thr226ala-A GCC GTG GAT GGC GGT ACC CCC GG 

Mrub_thr226ala-B CCG GGG GTA CCG CCA TCC ACG GC 

Ecoli_thr236ala-A CCG CTT CAA TGG CGG TGC CTC CCG G 

Ecoli_thr236ala-B CCG GGA GGC ACC GCC ATT GAA GCG G 

NEB Q5 SDM  

Mr1345_R189A_F GGC CGA TGT TGC GAT TGC CAC CGG CG 

Mr1345_R189A_R GCA AGC CGC AGG GCC TGG 

Ec0386_R197A_F 

GGA TGC CAC GGC CCC AGG CGT ATA AAT TTG CCG 

CTC AGG 

Ec0386_R197A_R CGC CCA GCA CGG CGG CGT 

Ec0386_ R249A_F GAA AGG CTT CGC TGC TGC AGT GAT CGA AG 

Ec0386_ R249A_R TCT TCC AGT ACG CGT ACC 

Mr1345_ G253R_F CTA CCC TGC GGC GGC ACG AAC TGG G 

Mr1345_ G253R_R CGG CCT CCA CTG CCT CCA 

EC-delP176-F GCC TAC GTA TTT ATG TTT ATC GAA G 

EC-delP176-R CGA AGA ACC GCT CAC ACC 
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MR-delP168-F GCG TAT GTG GCC GTG GTG G 

MR-delP168-R CGC CGA GGC CGA CAT GCC 

EC-delPA176-F TAC GTA TTT ATG TTT ATC GAA GCG 

EC-delPA176-R CGA AGA ACC GCT CAC ACC 

MR-delPA168-F TAT GTG GCC GTG GTG GCG 

MR-delPA168-R CGC CGA GGC CGA CAT GCC 

EC-delPAY176-F GTA TTT ATG TTT ATC GAA GCG ATG G 

EC-delPAY176-R CGA AGA ACC GCT CAC ACC 

MR-delPAY168-F GTG GCC GTG GTG GCG GAG 

MR-delPAY168-R CGC CGA GGC CGA CAT GCC 

 

The site-directed mutagenesis (SDM). SDM protocols were provided by the kit suppliers, 

Aligent and New England Biolabs. Table 1 lists the primers used in this study to create a series of 

base-pair substitutions and deletions of the E. coli K12 MG1655 and M. ruber proC/Mrub_1345 

genes. The Aligent QuikChange protocol used an overlapping primer strategy, while the New 

England Biolab’s Q5 protocol used back-to-back primer strategy. In both cases, an online resource 

was used to create suitable primers. Putative mutants were confirmed by Sanger sequencing 

through the DNA sequencing facility at the Genomics Division, Human Genetics Institute, 

University of Iowa, Iowa City. 

DNA sequencing analysis. The Expasy Translate Tool (https://web.expasy.org/translate/ ) 

was used to convert the DNA sequence data into an amino acid sequence, starting with the ATG 

start codon. An NCBI BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to create an 

alignment between the putative mutant ProC sequence and the wild-type sequence in GenBank. 

The putative mutant sequence was BLAST’ed against the respective genome (i.e., Escherchia coli 

K12 MG1655 or Meiothermus ruber DSM1279).     

Complementation. The complementation assay used in this study is described on the 

GENI-ACT site (http://geni-science.org/). A collection of strains was made by transforming the 

Keio E. coli proC null strain with pKt1 containing different inserts (e.g., E. coli proC+, 

Mrub_1345, sacB, and mutants of the E. coli proC and Mrub_1345 genes). Three types of 

complementation media were made, which were minimal plates, minimal supplemented with 

arabinose plates and minimal supplemented with proline plates. The various strains were streaked 

onto these plates and incubated 48 hours at 37oC. After the complementation assay was complete, 

we confirmed that each strain carrying the pKt1 vector (with and without the different varieties of 

proC) were confirmed by Sanger sequencing through the DNA sequencing facility at the 

Genomics Division, Human Genetics Institute, University of Iowa, Iowa City. 

 

 

 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Results 

 

 
 

Figure 8.  Partial BLASTp alignments between E. coli ProC deletion mutants (“query”) and 

wild-type E. coli K12 MG1655 ProC (“sbjct”). Panel A is E. coli ProC ∆P176; Panel B is E. coli 

ProC ∆PA176-177 mutant, and Panel C is E. coli ProC ∆PAY176-178 mutant. The BLASTp tool 

from https://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

This is a partial protein BLAST between E. coli ProC deletion mutants and the wild type 

form of E. coli, E. coli K12 MG1655 ProC. A BLASTp against E. coli wild type was performed to 

confirm that the strains used for complementation had the intended strains. This confirmed that an 

amino acid duplication was isolated versus a premature stop codon. All degrees of mutation were 

aligned against the wild type; the single amino acid mutation, E. coli ProC ∆P176, is shown in 

panel A, the double amino acid duplication, E. coli ProC ∆PA176-177, is shown in panel B, and 

the triple amino acid duplication, E. coli ProC ∆PAY176-178, is shown in panel C. 
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This is a partial protein BLAST between the wild-type Mrub1345 ProC and Mrub_1345 

ProC deletion mutants that confirms the presence of the target strain. All amino acid deletion 

mutants of varying severity were aligned. The single amino acid deletion mutation (Mrub_1345 

∆P168) is depicted in panel A, the double amino acid deletion mutation (Mrub_1345 

∆PA168-169) is depicted in panel B, the triple amino acid deletion mutation (Mrub_1345 

∆PAY168-170) is depicted in panel C. The region impacted by the mutation is highlighted by the 

redbox.  

 

Figure 9. Partial BLASTp alignments between Mrub_1345 ProC deletion mutants 

(“query”) and wild-type Mrub1345 ProC (“sbjct”). Panel A is Mrub_1345 ∆P168; 

Panel B is Mrub_1345 ∆PA168-169 mutant, and Panel C is Mrub_1345 ∆PAY168-170 

mutant. The BLASTp tool from https://blast.ncbi.nlm.nih.gov/Blast.cgi 
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Figure 10. Partial BLASTp alignments between two putative Mrub_1345 mutants 

(“query”) and the wild-type Mrub1345 ProC (“sbjct”). Panel A shows an Mrub_1345 

ProC duplication after Y170; Panel B shows an Mrub_1345 frameshift/deletion mutant 

after A167. Red boxes highlight the region impacted by the mutation. BLASTp tool from 

https://blast.ncbi.nlm.nih.gov/Blast.cgi 
 

 

 

 

 

 

 

 

 

 

Figure 10 shows a partial protein BLAST alignment between Mrub_1345 putative mutants 

and the wild-type version of M. ruber, Mrub1345 ProC. This confirmed the presence of the 

intended strain of duplication to be used for the complementation test. ProC is a protein that is 269 

amino acids long and ends at 170. 170 is the end of the sequence. The alignment only shows the 

region impacted by the mutation, which is highlighted by the red box. Mrub_1345 

ProC duplication after Y170 is depicted in panel A and Mrub_1345 frameshift/deletion mutant 

after A167 is in depicted in panel B. 
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Figure11. BLASTp alignment between an E. coli ProC deletion (“query”) and 

wild-type E. coli ProC (“sbjct”) showing a 100% alignment until E217; amino acids 

218-269 are deleted from the query sequence. BLASTp tool from 

https://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

 

 

 

 

Figure 11 is a partial protein BLAST between E. coli ProC deletion mutants and the wild 

type version of E. coli proC to confirm the presence of the required strain. The result is complete 

alignment until E217, as seen in the figure. Because the BLASTp alignment only shows the 

impacted region of interest, the alignment ends at 217 as the amino acids in the region of 218-269 

are deleted. 
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Figure 12. Confirmation of E. coli proC (R249A) mutant (Panel A, query) and 

Mrub_1345 (G253R) mutant (Panel B, query) as determined by a BLASTp alignment 

to their respective wild-type protein sequence (“Sbjct”). Red boxes identify the 

mutated regions. BLASTp tool from https://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

Figure 12 is a BLASTp alignment of the wild-type protein sequence against its respective 

mutants, E. coli proC R249A in Panel A and Mrub_1345 mutant in Panel B. This confirms the 

mutant strains prior to performing a complementation test. The alignment only shows the region 

impacted by the mutation, which is depicted by the red box. In panel A, amino acid G in the 

“Sbjct” is substituted to R in the “query” and amino acid R in the “Sbjct” is substituted to A in the 

“query” in panel B.  
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Figure 13. E. coli proC+ and E. coli proC (R249A) grew on minimal and 

min+arabinose, whereas the Mrub_1345 and Mrub_1345 (G253R) required 

arabinose activation to grow and the E.coli and Mrub_1345 deletions had to be 

supplemented with proline to grow. Unless otherwise noted, the Keio E. coli 

proC auxotroph is the host strain for all samples. Panel A. Sector 1) wild-type 

E. coli K12 strain; 2) Keio E. coli proC null strain; 3) pKt1; 4) E. coli 

proC+/pKt1; 5-6) E. coli proC (R249A)/pKt1. Panel B. Sector 1) wild-type E. 

coli K12 strain; 2) Keio E. coli proC null strain; 3) pKt1; 4) Mrub_1345/pKt1; 

5-6) Mrub_1345 (G253R)/pKt1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sector 1 contains the wild-type E. coli K12 strain, which grew on all plates. Sector 2 

contains the Keio E. coli proC null strain. This strain confirms no growth takes place without 

proline. It confirms the lack of growth because it is null for proline. Sector 3 contains pKt1, which 

does not contribute to proline production. Therefore, sectors 2 and 3 did not grow in on minimal 

and minimal+arabinose and only grew in minimal+proline. Sector 4 contains E. coli proC+/pKt1 

in which the proC gene placed back in the null strain allows the production of proline. Panel A 

depicts E. coli mutants, E. coli proC+/pKt1 in sector 4 and E. coli proC (R249A)/pKt1 in sectors 5 

and 6. Panel B depicts M. ruber mutants, Mrub_1345/pKt1 in sector 4 and Mrub_1345 

(G253R)/pKt1 in sectors 5 and 6. E. coli proC+ and E. coli proC (R249A) grew on minimal and 

min+arabinose in the absence of proline. Because the mutants grew, this method is not the 

preferred method to discern mutation. Mrub_1345 and Mrub_1345 (G253R), however, required 

arabinose activation to grow.  Both E. coli and M. ruber deletions only grew in the presence of 

proline.  



22 

 

 

Figure 14. Complementation assay of Mrub_1345 wild-type and deletion mutants. Unless 

otherwise noted, the Keio E. coli proC auxotroph is the host strain for all samples. Sector 1) 

wild-type E. coli K12 strain; 2) Keio E. coli proC null strain; 3) pKt1; 4) Mrub_1345/; 5) 

Mrub_1345 (∆P168)/pKt1; 6) Mrub_1345 (∆PA168-169)/pKt1; 7) Mrub_1345 

(∆PAY168-170)/pKt1; 8) Mrub_1345 (premature stop)/pKt1 in Keio E. coli proC null strain. 

Figure 14 shows a complementation assay of the wild type of M. ruber, Mrub_1345, and its 

respective deletion mutants of varying degrees. In addition to the wild-type E. coli K12 strain 

(sector 1),  Mrub_1345/ (sector 4), Mrub_1345 (∆P168)/pKt1 (sector 5), Mrub_1345 

(∆PA168-169)/pKt1 (sector 6) grew on minimal+arabinose.  Keio E. coli proC null strain (sector 

2), pKt1 (sector 3), Mrub_1345 (∆PAY168-170)/pKt1 (sector 7), and Mrub_1345 (premature 

stop)/pKt1 in Keio E. coli proC null strain (sector 8) only grew on minimal+prokine. It was found 

that M. ruber deletion mutants show the same growth pattern as the wild type version in the case of 

one or two two base pair deletions. Mutants where three amino acids in a row were deleted showed 

no growth.  
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Figure 15. Complementation assay of E. coli proC+ and deletion clones. Unless otherwise noted, 

the Keio E. coli proC auxotroph is the host strain for all samples. Sector 1) wild-type E. coli K12 

strain; 2) Keio E. coli proC null strain; 3) pKt1; 4) E. coli proC+ /pKt1; 5) E. coli proC 

(∆P176)/pKt1; 6) E. coli proC (∆PA176-177)/pKt1; 7) E. coli proC (∆PAY176-178)/pKt1; 8) E. 

coli proC (premature stop) pKt1. 

Figure 15 is a complementation assay of the wild type of E. coli proC+ and clones of E. 

coli. These clones had varying degrees of mutation severity. The single amino acid deletion,  E. 

coli proC (∆P176)/pKt1 (sector 5) grew on minimal+arabinose along with the wild-type E. coli 

K12 strain (sector 1) and E. coli proC+ /pKt1 (sector 4). E. coli proC (∆PA176-177)/pKt1 (sector 

6) and E. coli proC (∆PAY176-178)/pKt1 (sector 7) grew on minimal+arabinose. In E. coli, the 

last half of proC has the active site which binds the substrate. The E. coli proC (premature stop) 

pKt1 (sector 8) only grew on minimal+proline along with Keio E. coli proC null strain (sector 2) 

and pKt1 (sector 3). Therefore, it was found that E. coli can grow on minimal media whereas 

M.ruber needs arabinose. This is because it is growing in a new host and a new environment; it 

needs the added induction.  
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Table 3:  Complementation assay of E. coli proC and proC mutants 

Host Cell Plasmid Minimal Minimal + 

Arabinose 

Minimal + 

Proline 

E. coli K12 proC+ none + + + 

Keio E. coli proC none ー ー + 

E. coli proC+ in pKt1 + + + 

E. coli proC (Gly11Asp) in pKt1 + + + 

E. coli proC (Thr236Ala) in pKt1 + + + 

E. coli proC (Arg249Ala) in pKt1 + + + 

E. coli proC (∆P176) in pKt1 + + + 

E. coli proC (∆PA176-177) in pKt1 ー + + 

E. coli proC (∆PAY176-178) in pKt1 ー + + 

 E. coli proC premature stop in pKt1 ー ー + 

 

Table 3 shows all the mutants generated and their growth pattern. It can be deduced from 

the data that loss of function from from base pair substitutions and small deletions cannot be 

discerned. E. coli was found to be more sensitive when grown on minimal media. The three 

substitution mutants and the single amino acid deletion grew under all growth conditions. More 

severe deletions, such as E. coli proC (∆PAY176-178) in pKt1, grew on arabinose only. E. coli 

proC+ in pKt1, E. coli proC (Gly11Asp) in pKt1, E. coli proC (Thr236Ala) in pKt1, E. coli proC 

(Arg249Ala) in pKt1, and E. coli proC (∆P176) in pKt1 grew under all growth conditions, even 

minimal. E. coli proC (∆PA176-177) in pKt1 and E. coli proC (∆PAY176-178) in pKt1 only grew 

with the supplement of arabinose.  E. coli proC premature stop in pKt1 did not grow in minimal 

and minimal+arabinose and grew on minimal+proline only.  
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Table 4: Complementation assay of wild-type Mrub_1345 and Mrub_1345 mutants 

Host Cell Plasmid Minimal Minimal + 

Arabinose 

Minimal + 

Proline 

E. coli K12 proC+ none + + + 

Keio E. coli proC- none ー ー + 

Mrub_1345 in pKt1 ー + + 

Mrub_1345 (Gly11Asp) in pKt1 ー + + 

Mrub_1345 (Thr226Ala) in pKt1 ー + + 

Mrub_1345 (Gly253Arg) in pKt1 ー + + 

Mrub_1345(∆P168) in pKt1 ー + + 

Mrub_1345 (∆PA168-169) in pKt1 ー + + 

Mrub_1345 (∆PAY168-170) in pKt1 ー ー + 

Mrub_1345 duplication (region) in pKt1 ー + + 

Mrub_1345 (premature stop) in pKt1 ー ー + 

 

Table 4 shows all the mutants generated and their growth pattern. Similar to E. coli, loss of 

function and growth patterns cannot be discerned unless mutations are severe. M. ruber grew on 

arabinose, which is expected, as it needs this environment of increased activation due to the 

difference of temperature that M. ruber normally grows in. Mrub_1345 (Gly11Asp) in pKt1, 

Mrub_1345 (Thr226Ala) in pKt1, Mrub_1345 (Gly253Arg) in pKt1, Mrub_1345(∆P168) in pKt1, 

Mrub_1345 (∆PA168-169) in pKt1, and Mrub_1345 duplication (region) in pKt1 grew on 

minimal+arabinose and minimal+proline only. The three substitution mutations and the single 

amino acid deletion mutation showed a similar growth pattern. This is important to note because 

Mrub_1345 (Gly253Arg) in pKt1 depicts a relatively different case where a particular amino acid, 

glycine was altered. There is a smaller difference in this suctitution compared to alanine, which is 

the smallest amino acid that varies more significantly in its chemical nature from other amino 

acids. In the case of an increased severity of mutation, three amino acid deletion of Mrub_1345 

(∆PAY168-170) in pKt1, no growth was observed in minimal+arabinose. Similarly, Mrub_1345 

(premature stop) in pKt1, only grew in minimal+proline. 
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Conclusion 

 

The first goal of this project was to develop a set of mutants within E. coli and M. ruber 

ProC that reflected a hierarchy of severity to the functional state of the protein. We predicted more 

severe consequences to removing one or more conservative amino acids, as opposed to 

substituting chemically different amino acids for conserved amino acids. It was found that two or 

more amino acid deletions reduced or eliminated ProC function; amino acid substitutions did not 

impact ProC function under our experimental conditions. Uner our conditions, we could 

distinguish between a double and triple mutant. The E. coli proC double mutant 

∆PA176-177/pKt1 grown on arabinose gave a very weak positive reaction, while the triple mutant 

∆PAY176-178/pKt1 did not grow on minimal or minimal + arabinose. This observation suggests 

that our system might be able to distinguish the double and triple mutants in future investigations.  

 

One observation we made in this experiment was the difference in the growth pattern of M. 

ruber ProC (nonmutated or mutated) as compared to the comparable nonmutant or mutant state in 

E. coli, respectively. For example, the E. coli proC-pKt1 in the null strain grew on minimal; 

however, the M. ruber proC-pKt1 in the null did not. If complementation was observed for the M. 

ruber strains, then it required transcriptional enhancement for growth, while E. coli proC did not. 

We hypothesize that under our experimental conditions (e.g., 37oC), M. ruber proteins function 

less due to their adaptation to higher temperatures (55-70oC). Therefore, the prediction is that the 

lower temperature is likely inhibiting even the wild type version of M. ruber ProC. We predict that 

arabinose activation is overcoming this negative effect caused by the difference in temperature. 

Because M.ruber is adapted to growth under higher temperatures than E. coli and our experimental 

conditions, those M. ruber proteins are likely nonfunctional or not functioning as well as in normal 

conditions. Therefore, a transcriptional activation, more mRNA and therefore more protein 

product, is compensating for lower enzyme activity.  

 

 The second goal of this project was to evaluate the use of complementation test using the 

Keio E. coli null strains to assess the impact of mutants on ProC enzyme activity. While kinetic 

studies are a more accurate way for assessing enzyme function, it requires additional steps in 

enzyme purification and performing many enzyme assays, which can be prohibitively time 

consuming in a lab course or for independent student research projects. We had hoped to develop 

this complementation test as a less time-consuming strategy. While our approach hasn’t allowed 

us to distinguish single amino acid substitutions or single amino acid deletions, we see potential in 

the study of two or more amino acid deletions. Nonetheless, this approach identified the level of 

severity needed in future research experiments, as well as possible future steps to be taken.  

 

The next step to continue evaluating base pair substitutions would be to add a histidine tags 

to the ProC protein for easier purification, and then perform the enzyme kinetic assays. Adding 

histidine affinity tags has become the more functional route of purification in the study of 

biochemical proteins. The efficiency of histidine tags was investigated by Sinéad T. Loughran and 

Dermot Walls, where short affinity tags were used in purification of proteins (Loughran and Walls, 

2011). In fact, this technique was employed on E. coli bacteria, which has lac operon sequences. 
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This is important because lac operon sequences are the most common form of expression used by 

different types of bacteria. Hence, this method shows potential for being successful with both 

E.coli and M.ruber bacteria in future implementations of histidine tag purifications. It was found 

that the six histidine aminoacids can be placed on either the N or C terminus. The difference in 

location is the added level of regulation through the C terminus, where purification is limited to 

full-length proteins (Walls and Loughran, 2011). Because histidines are uncommon amino acids in 

general protein structures, experimentation can be performed on these proteins at a pH of 8 as they 

maintain their uncharged condition. Histidines are also relatively smaller in size and, therefore, do 

not need to be isolated as they do not affect protein functioning (Walls and Loughran, 2011). The 

method of using his-tags was adapted from “Metal chelate affinity chromatography, a new 

approach to protein fractionation,” the original developers of the process (Jerker Porath, Jan 

Carlsson, Ingmar Olsson, & Greta Belfrage, 1975). 
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