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Introduction  

 

Strain 21T (= DSM 1279, ATCC 35948 = VKM B - 1258) is a type strain of the species 

Meiothermus ruber (M.ruber). Strain 21T was initially placed in the Thermus genus, but it was 

later moved to the genus, Meiothermus (Nombre et al., 1996; Loginova LG and Egorova LA, 

1975). The species name “ruber” is a latin epithet, which translates into english as “red”. Thus, 

“ruber” describes the red pigmentation of M.ruber (Loginova LG and Egorova LA, 1984; 

Euzéby JP, 1997). The genus name Meiothermus is coined from two greek works: “meion” 

means “lesser” and “thermus” means “hotter” - that describe the less hot habitat of the bacteria. 

(Nombre et al., 1996; Euzéby JP, 1997). Eight species in the Meiothermus genus were isolated 

from artificial thermal environment and hot springs found in six different countries (Euzéby JP, 

1997; Tindall, B. J. et al., 2010; Nombre et al., 1996).  

 

M. ruber DSM 1279 genome’s (GenBank name ASM2442v1) was sequenced, finished, and 

annotated as part of GEBA (Genomic Encyclopedia of Bacteria and Archaea) project, a 

collaboration between U.S. Department of Energy Joint Genome Institute and Leibniz - Institut 

DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH). The goal of the 

project is to fill the gaps by sequencing along the archaeal branches and bacterial branches of the 

tree of life. This bacteria strain is one of the many non-pathogenic bacteria species whose 

genomes were sequenced because they are part of the poorly studied diverse bacterial phyla 

(Tindall B.J, et al., 2010; Scott et al., n.d; Wu et al.,2009). Sequencing M.ruber’s genome, 

together with that of other species of bacteria, would lead to novel gene discoveries, novel 

biochemical processes, and increase understanding in the underlying processes of evolutionary 

diversification microbes (Scott et al., n.d.).  

 

Meiothermus ruber is a gram negative, non-motile, rod shaped bacteria with rounded ends 

(Figure 1). This bacterium is obligate aerobic. M.rub grows in normal media that is 

supplemented with 0.15% (w/w) peptones as a source of nitrogen, 0.05% (w/v) yeast extract, and 

0.25% (w/v) carbon sources like D-glucose (Loginova LG and Egorova LA, 1984).  

 

 

 

 

 

 

Figure 1. Scanning electron 

micrograph of rod-shaped M. 

ruber 21T. 

http://standardsingenomics.org  

 

 

 

 

 

 

 

http://standardsingenomics.org/


 

3 
 

M.ruber’s sequenced genome has some unique properties such as being a 3,097,457 b.p. long 

chromosome with 3052/3105 genes that encode proteins. 53 of the genes encode RNA, and 38 of 

the genes are pseudogenes. 71.8% of the protein-encoding genes have been assigned putative 

functions (Tindall B.J, et al., 2010).  

 

Living organisms have many systems that help them survive. Microbes have several defense 

mechanisms that enable them to recognize and distinguish many “foreign” DNA from “self” 

DNA, in addition to getting protection from invasive elements.  The Clustered Regularly 

Interspaced Short-Palindromic Repeats (CRISPR)-Cas system is an adaptive immune system of 

bacteria and archaea. The acronym CRISPR was coined in 2002, but its structure was discovered 

in Escherichia coli in 1987. CRISPR is a family of DNA repeats that make up 90% of the 

archaeal genome and 40% of the bacterial genome. Its size varies from 23 - 47 base pairs and 21-

72 base pairs (Jansen et al., 2002; Van der oost et al., 2009; Sorek R, Kunin V, Hugenholtz P. 

2008, Horvath P and Barrangou R. 2010). 

 

CRISPR provides an acquired immunity for the microbes against viruses and plasmids (Horvath 

P and Barrangou R. 2010). CRISPR loci is made up of non-adjoining direct repeat separated by 

spacer (stretches of variable sequences), usually next to cas genes - protein encoding genes that 

serve as nucleases, helicases, polymerases, and polynucleotide-binding proteins - (Haft DH et 

al., 2005). The repeat sequences are partially palindromic, and they can form stable secondary 

structures (Kunin V, Sorek R, Hugenholtz P. 2007). Cas proteins and CRISPR come together to 

form the CRISPR-Cas system, which uses a range of small CRISPR RNAs (crRNAs) that are 

transcribed from the CRISPR loci and the cas proteins to detect specific, non-self-DNA 

sequences and silence them. This defense system targets non-self-DNAs through base pairing 

between the DNAs and the crRNA guide sequence that result in cas-protein mediated DNA 

cleavage (Barrangou et al. 2007; Browns, SJ. et al., 2008; Garneau, JE et al., 2010; Marraffini, 

LA et al., 2008). This functional relationship between cas and CRISPR was obtained by inferring  

from congruence obtained between sequence of patterns (Figure 2) (Barrangou R et al., 2007). 

 

 
Figure 2. The E. coli CRISPR/Cas operon system. A type I subtype E operon system (a sequence 

of genes whose transcription is regulated in a sequential manner starting with the promoter) 

shows the genes that encode the proteins that make the cascade (Complex of proteins that 

assemble with crRNA to form the Cascade complex; targets the invading DNA/RNA sequence). 

Numbers under Cas A-E identify the number of copies of each protein in a cascade complex that 

recruits Cas3, which is a helicase & nuclease to catalyze target DNA degradation (Jiang & 

Doudna, 2015).  

 

 



 

4 
 

The CRISPR-Cas adaptive immune system consists of three stages by which the organism is 

provided with immunity against invaders. The adaptation or acquisition stage involves 

identification of the PAM (protospacer adjacent motif) sequence, which lies 2-4 bases upstream 

of a protospacer region. The protospacer, now called the spacer, is then incorporated into a 

CRISPR array in the host’s genome. This enables the host to keep genetic records of the prior 

invasion; thus, facilitating future immune response against the same invader. The next stage is 

the CRISPR-cas expression during which the CRISPR array is transcribed into pre-crRNA, and 

further processed into matured crRNAs. The last stage is DNA interference. In this step, 

complexes formed between the matured crRNAs and the cas proteins are used to target viral 

DNA for degradation; therefore, preventing propagation (Figure 3) (Van der oost et al., 2014; 

Marraffini LA and Sontheimer EJ, 2010; Wiedenheft B, Sternberg SH, Doudna JA, 2012; 

Brouns SJ, et al. 2008; Heler R, Marraffini LA, Bikard D., 2014; Mojica FJM et al., 2009).  

 

 

 

Figure 3. Schematic representation of the CRISPR-Cas immune response. The three major stages 

begin with adaptation, then commences crRNA biogenesis, and finally destroys the invading 

DNA during the interference stage. The effector complex acts in the interference stage to spot 

future foreign nucleic acids and degrade them. Key: “R” (repeats region), “S” (spacer region of 

the host’s sequence), “SO” (selected protospacers from the invading nucleic acids that are 

inserted in front of the “leader” end of the CRISPR locus); Blue wavy lines (host’s nucleic acid 

sequence); and red wavy lines (invader’s nucleic acid sequence) (Wright et al., 2016). 
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There are three main types of the CRISPR-Cas systems: types I, II, and III. These main types are 

further divided into 11 sub-types: I-A to I-F, II-A to II-C, and III-A to III-B (Figure 4) 

(Markarova KS, et al. 2011; Chylinski K, et al. 2014). All these CRISPR-Cas systems work to 

provide adaptive immunity, but there exist some mechanistic diversities. These diverse 

mechanisms are, especially, prominent during the CRISPR-Cas expression stage, and the DNA 

interference stage of an immune response (van der Oost J, et al. 2014). For example, type I 

CRISPR-Cas system uses Cas 3 proteins to aid in unwinding and cleaving the non-self-DNA 

when a cascade is formed that binds the complementary DNA target sequence (Westra ER et al., 

2012; Sinkunas T et al., 2013). Cas 3 proteins are nuclease helicases, Cas 1 proteins (proposed to 

be double-stranded DNA endonuclease) and Cas 2 proteins (proposed to be sequence-specific 

endonuclease that cleave uracil-rich single stranded RNAs) are universal markers of the 

CRISPR-Cas system (Westra ER et al., 2012; Sinkunas T et al., 2013; Sorek R, Kunin V, 

Hugenholtz P. 2008; Haft DH et al., 2005; Beloglazova N et al., 2008).  

 

 
Figure 4. Representation of the components of the different types of the CRISPR-Cas systems. 

Class 1 (Types IA-E, III, IV): multi-subunit Cascade complex, and Class 2 (Types II, V, VI): 

single-subunit effector. The names in the colored boxes represent the different gene encoding 

proteins. Key: Cmr (Chlorophenicol resistance protein); Csm (Cutoff Scanning Matrix, which is 

a recent protein function prediction and structural classification method); Cas (CRISPR-

associated system) (Wright et al., 2016). 

 

 

The CRISPR-Cas system is an important system to study because of the current scaled up 

implementation of an engineered version of the TypeII Cas 9 targeting complex for site-specific 

genome engineering in animals, plants, fungi, and bacteria (Jinek M et al. 2012; Jiang F and 

Doudna JA. 2015). Although several research works have informed the scientific world on the 

CRISPR-Cas system of organisms, such as Escherichia coli, there are still some unknowns. For 

instance, the structural mechanism by which PAM recognition triggers Cas3 mediated DNA 

cleavage is yet to be elucidated (Anders C et al.; 2014). Also, it will be beneficial to probe the 
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reason behind a comparatively smaller percentage of bacteria CRISPR genome, that is 50 % 

lower than the percentage found in archaea (Horvath P and Barrangou R. 2010).  

 

This journal style research paper seeks to answer this question: Is mrub_3020, a possible paralog 

of mrub_1489, orthologous to E. coli cas3 (locus tag b2761)? E. coli K12 MG1655 strain is used 

as the model organism because extensive published research is available on its CRISPR-Cas 

system (EcoCyc; Jiang and Doudna, 2015). E.coli cas3 gene encodes the CRISPR-associated 

endonuclease/helicase Cas3, a signature protein of the Type I CRISPR systems It has been 

shown to support the Cascade complex to provide resistance to the host cell against certain 

phages. Some genomic regions of these phages are complementary to some elements of the 

CRISPR repeat (Brouns et al., 2008). CasA recruits Cas3 to the Cascade complex and positions 

it near the "protospacer adjacent motif" (PAM) (Hochstrasser et al., 2014).  Cas3 proteins 

support the complex by cutting the target viral DNA, unwinding it, and then degrading it through 

a joint ATP-dependent helicase activity and Mg2+-dependent HD-nuclease activity (Bailey and 

Mulepati, 2013; Westra et al., 2012). 

 

M. ruber DSM1279 is the test organism whose potential CRISPR-Cas gene (mrub_3020) would 

be primarily studied.  Part of this research would seek to determine if mrub_1489 is a possible 

paralog (homologous structures or organisms that have their evolution reflects gene duplication) 

of mrub_3020 (Fitch WS, 1970). This because there could be the possibility that such paralogs 

would exist for the test organism because previous studies using the genome of the model 

organism showed that 66% of the putative proteins encoded by the model organism’s genome 

were paralog proteins (Labedan B and Riley M, 1995; 1995; 1997). Additionally, probing the 

possibility of mrub_3020 having the paralog would give way to appreciating evolutionary 

processes that may have generated the biochemical and other biological differences between the 

proteins encoded by the paralog genes (Ewen-Campen B, et al., 2017). Studying paralogs is a 

great way to fathom the nature of the paralog: Is it a “phenotype gap” (the existence of large 

number of genes that result from gene duplication and do not have detectable phenotypic effect 

when the genes are altered)?, did it acquire new functions?, did it retain varying degrees of 

overlapping functions, or did it acquire new functions and still retain some of its initial roles? 

(Rogers, R.L. et al., 2009; Ewen-Campen B, et al., 2017).  

 

 

Materials and Methods.  

 

Ecocyc, a sister site of MetaCyc and Biocyc, (Keseler et al., 2013) was the first bioinformatics 

tool used to learn more about the CRISPR-Cas system in the model organism of this study, 

Escherichia coli K-12 MG1655.  This bioinformatics tool is a scientific database dedicated to the 

prokaryote Escherichia coli K-12 MG1655. It includes an extensive literature-based curation of 

the many processes known to occur in this specific bacterial strain.  

Next, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 

2000; Kanehisa et al.,2017, Kanehisa et al.,2019) was used to determine the similarity or the 

difference between the CRISPR/Cas system of M. ruber DSM1279 and of E. coli K12 strain. 

The Integrated Genome and Metagenome comparative data analysis system (IMG/M) database 

(Markowitz et al., 2012), together with National Center for Biotechnology Information (NCBI) 

Basic Local Assignment Search Tool (BLAST) (Madden, T., 2002) were used to confirm the 
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start codon of mrub_3020 and mrub_1489 amino acid sequences.  The NCBI BLAST was 

performed to further investigates the similarity between the model E. coli Cas3 protein (locus tag 

b2761) and the query mrub_3020 protein using their respective amino acid sequences. 

GenBank® is another essential tool that provided access to the complete genome of the study 

organism: Meiothermus ruber DSM 1279, which was used to retrieve the specific genetic 

information for mrub_3020 and mrub_1489 (GenBank Overview). E.coli b2761, mrub_3020 and 

mrub_1489 were the genes used for this study. 

Three different bioinformatics tools were used to determine the cellular location of the E. coli 

Cas 3 protein and the two M. ruber putative proteins. TMHMM was used to predict whether the 

proteins could have membrane-embedded transmembrane alpha helices (Krogh A and Rapacki 

K, 2016). PRED (Bagos et al., 2004, 2004), on the other hand, was used to determine if the two 

proteins are composed of membrane-embedded transmembrane beta-barrel, which would be 

localized to the outer membrane. PSORT-B (Yu et al., 2010) uses refined localization 

subcategories and predictive probabilities to predict the protein’s subcellular localization. The 

potential cellular locations in Gram negative bacteria include the cytoplasm, the inner membrane, 

the periplasm, the outer membrane and the extracellular space. 

 

Conserved Domain Database (CDD), TIGRfam, Pfam, and PDB are the different bioinformatics 

tools used to gather structure-based evidences to determine if the three proteins 

proteins/polypeptide strands share the same physical properties such as protein domains and 

families. CDD (Marchler et al., 2016) is a database of annotated multiple sequence alignment 

models for full-length proteins and ancient domains. TIGRfam (Haft et al., 2001) is a resource of 

protein families that facilitates functional identification of proteins. Pfam (Finn et al., 2016) is a 

database of protein families. It was used to analyze the amino acid sequences of the model gene 

and mrub_3020.  PDB (Berman et al., 2000) gives access to three-dimensional information for 

large biological molecules like proteins, DNA, and RNA. It was used to gather additional 

information on E. coli Cas3 (locus tag b2761) and the two putative M. ruber proteins.  

Another set of bioinformatics tools were used to find evidence to determine whether mrub_3020 

and mrub_1489 are paralogs. Protein Blastp was performed using mrub_3020 as the query 

against the M. ruber DSM1279 genome. The nucleotide sequence of the likely paralog, together 

with that of mrub_3020 obtained using NCBI BLAST, was used on T-Coffee (Notredame et al., 

2000) to make multiple-sequence alignment. Phylogeny.fr was used to create a phylogenetic tree. 

In addition, we returned to IMG/M to study the chromosomal organization of the genes flanking 

mrub_3020 and mrub_1489 to determine if one or both genes are part of a CRISPR-Cas operon.  

 

 

 

 

 

 

 

 

 

http://ubwp.buffalo.edu/wnygirahcp/wp-content/uploads/sites/25/2014/05/Module-3.-Structure-Based-Similarity.pdf


 

8 
 

 Results. 

 

Is E. coli cas3 orthologous to Mrub _3020? 

 

Taken from EcoCyc, Figure 5 shows the order of genes near the cas3 gene on map position 

2,884,553 . . . 2,887,219 of E. coli K-12 MG1655. The symbols “σ32” and “σ70” denote the 

sigma factor recognition sites (aka promoter region) for this set of genes. The E. coli cas3 gene 

is shown to be outside but adjacent to the CRISPR-Cas operon, which begins with casA and ends 

with cas2 on the far left. The same bioinformatics tool indicated that the translated cas3 gene of 

E. coli yields a sequence of 888 amino acids (Figure 6). This amino acid sequence is folded into 

the Cas 3 protein and, EcoCyc predicts that the protein is in the cytosol of the cell.  

 

 

Figure 5. A section of the chromosomal map of E. coli K-12 MG1655 organism that contains the 

components of the Type I-3 CRISPR-Cas system. The E. coli cas3 gene is highlighted in red and 

it is located between map position: 2,884,553 <- 2,887,219. The neighboring genes are colored 

green and they each encode a unique Cascade protein. The direction of the arrows show the 

transcription occurs from the right to left. The symbols “σ32” and “σ70” denote the sigma factor 

recognition sites (aka promoter region) for this set of genes. 

Figure 6. The FASTA formatted amino acid sequence of E. coli b2761 is shown above. The 

single-letter abbreviations for each amino acid are used. The first amino acid “M” (methionine) 

at the top left and the last amino acid L (lysine) denote the N-terminal and C-terminal, 

respectively, of the Cas3 protein. 

 

>E. coli:b2761 K07012 CRISPR-associated endonuclease/helicase Cas3 

MEPFKYICHYWGKSSKSLTKGNDIHLLIYHCLDVAAVADCWWDQSVVLQNTFCRNEMLSKQRVKA
WLLFFIALHDIGKFDIRFQYKSAESWLKLNPATPSLNGPSTQMCRKFNHGAAGLYWFNQDSLSEQSLG
DFFSFFDAAPHPYESWFPWVEAVTGHHGFILHSQDQDKSRWEMPASLASYAAQDKQAREEWISVLEA
LFLTPAGLSINDIPPDCSSLLAGFCSLADWLGSWTTTNTFLFNEDAPSDINALRTYFQDRQQDASRVLE
LSGLVSNKRCYEGVHALLDNGYQPRQLQVLVDALPVAPGLTVIEAPTGSGKTETALAYAWKLIDQQI
ADSVIFALPTQATANAMLTRMEASASHLFSSPNLILAHGNSRFNHLFQSIKSRAITEQGQEEAWVQCC
QWLSQSNKKVFLGQIGVCTIDQVLISVLPVKHRFIRGLGIGRSVLIVDEVHAYDTYMNGLLEAVLKAQ
ADVGGSVILLSATLPMKQKQKLLDTYGLHTDPVENNSAYPLINWRGVNGAQRFDLLAHPEQLPPRFSI
QPEPICLADMLPDLTMLERMIAAANAGAQVCLICNLVDVAQVCYQRLKELNNTQVDIDLFHARFTLN
DRREKENRVISNFGKNGKRNVGRILVATQVVEQSLDVDFDWLITQHCPADLLFQRLGRLHRHHRKYR
PAGFEIPVATILLPDGEGYGRHEHIYSNVRVMWRTQQHIEELNGASLFFPDAYRQWLDSIYDDAEMDE
PEWVGNGMDKFESAECEKRFKARKVLQWAEEYSLQDNDETILAVTRDGEMSLPLLPYVQTSSGKQL
LDGQVYEDLSHEQQYEALALNRVNVPFTWKRS 
FSEVVDEDGLLWLEGKQNLDGWVWQGNSIVITYTGDEGMTRVIPANPK 
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The IMG/M chromosome maps generated for E. coli b2761, mrub_3020, and mrub_1489 show 

that these three genes are adjacent to a CRISPR array and other cas genes, which suggests they 

are likely components of a CRISPR-Cas system (Figure 7). The cas gene order for the region 

containing E. coli cas3 and mrub_3020 are nearly identical (See Table 1), which strongly 

suggests that both have a Type I-E system. The set of cas genes positioned near mrub_1489 

suggests a Type I-C and/or Type III-C CRISPR-Cas system (Table 1).  

 

 

 

 

KEGG was used to compare the CRISPR/Cas systems in M. ruber and E. coli. Both 

CRISPR/Cas systems could have specific genes that encode the same protein (e.g. Cas A 

proteins). But, there could be some proteins that are only encoded by certain genes in the 

CRISPR/Cas system of either the model organism or the test organism. (Cmr: Chlorophenicol 

resistance protein; CSM: Cutoff Scanning Matrix, which is a recent protein function prediction 

and structural classification method; cas: CRISPR-associated system) (Table 1).  

 

 

 

 

 

 

 

Figure 7. IMG/M chromosomal map suggests that E. coli b2761/cas3 (Panel A) and the two 

putative cas3 genes of M. ruber (mrub_3020 in Panel B, and mrub_1489 in Panel C) are 

components of a CRISPR-Cas system. The multiple red vertical lines represent the CRISPR array. 
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Table 1A. Comparison between the genes involved in the CRISPR/Cas system of E. coli and M. 

ruber using KEGG.  
Locus Tag(s) 

 

Gene product name E. coli K12 M. ruber 

Cas 1 multifunctional nuclease Cas1 b2755 Mrub_0224 

Mrub_1477 

Mrub_3013 

Cas 2 CRISPR-associated endoribonuclease Cas2 b2754 

 

 

Mrub_1476 

Mrub_0225 

Mrub_3012 

Type I CRISPR-Cas system. 

 

Type I signature cas proteins  

Cas 3 

 

Subtype  

I-A factors 

Cas 4 

Cas 6 

 

I-B factors 

Cas 4 

 

I-C factors 

Csd1 

Csd2 

Cas4 

Cas5 family 

 

I-D factors 

Cas4 

Cas6 

 

I-E factors 

CasA   

CasB      

CasC      

CasD      

CasE 

 

I-F factors 

 

I-U factors 

 

 

 

CRISPR-associated helicase 

 

 

 

CRISPR-associated protein 

CRISPR-associated protein 

 

 

CRISPR-associated protein 

 

 

CRISPR-associated protein 

CRISPR-associated protein 

CRISPR-associated protein 

CRISPR-associated protein 

 

 

CRISPR-associated protein 

CRISPR-associated protein 

 

 

CRISPR system Cascade subunit CasA 

CRISPR system Cascade subunit CasB 

CRISPR system Cascade subunit CasC 

CRISPR system Cascade subunit CasD 

pre-CRISPR RNA endonuclease 

 

N/A 

 

N/A 

 

 

 

b2761(has 

endonuc- 

lease role)  

 

N/A 

 

 

 

N/A 

 

 

N/A 

 

 

 

 

 

N/A 

 

  

 

b2760 

b2759 

b2758 

b2757  

b2756 

 

N/A 

 

N/A 

 

 

 

Mrub_3020 

 

 

 

Mrub_1478 

Mrub_0222 

 

 

Mrub_1478 

 

 

Mrub_1487 

Mrub_1486 

Mrub_1478 

Mrub_1488 

 

 

Mrub_1478 

Mrub_0222 

 

 

Mrub_3019 

Mrub_3018 

Mrub_3016  

Mrub_3015 

Mrub_3014 

 

N/A 

 

N/A 

  

https://www.genome.jp/dbget-bin/www_bget?mrb:Mrub_0224
https://www.genome.jp/dbget-bin/www_bget?mrb:Mrub_1477
https://www.genome.jp/dbget-bin/www_bget?mrb:Mrub_3013
https://www.genome.jp/dbget-bin/www_bget?mrb:Mrub_1476
https://www.genome.jp/dbget-bin/www_bget?mrb:Mrub_0225
https://www.genome.jp/dbget-bin/www_bget?mrb:Mrub_3012
https://www.kegg.jp/dbget-bin/www_bget?eco:b2758
https://www.kegg.jp/dbget-bin/www_bget?eco:b2757
https://www.kegg.jp/dbget-bin/www_bget?eco:b2756
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Table 1B. Comparison between the genes involved in the CRISPR/Cas system of E. coli and M. 

ruber using KEGG (Continued) 
 

Locus Tag(s) 

 

Gene product name E. coli K12 M. ruber 

Type II CRISPR-Cas System 

 

Type II signature cas proteins 

 

Subtype  

II-A factors 

II-B factors 

Cas 4 

 

Type III signature cas proteins 

Csm 1 

 

Subtype  

III-A factors 

Csm 2 

Csm 3 

Csm 4 

Csm 5 

 

III-B factors 

Cmr 1 

Cmr 2 

Cmr 3 

Cmr 4 

Cmr 5 

Cmr 6 

 

III-C factors 

 

 

 

 

 

N/A 

 

CRISPR-associated protein 

 

 

CRISPR-associated protein 

 

 

 

CRISPR-associated protein 

CRISPR-assoc. RAMP protein 

CRISPR-assoc. RAMP protein 

CRISPR-assoc. RAMP protein 

 

 

CRISPR-assoc. RAMP protein 

CRISPR-associated protein 

CRISPR-associated protein 

CRISPR-assoc. RAMP protein 

CRISPR-associated protein 

CRISPR-assoc. RAMP protein 

 

 

 

 

 

 

N/A 

 

N/A 

 

 

N/A 

 

 

N/A 

 

 

 

 

 

 

N/A 

 

 

 

 

 

 

 

 

 

 

 

 

Mrub_1478 

 

 

Mrub_0215  

 

 

 

Mrub_0216 

Mrub_0217 

Mrub_0218 

Mrub_0219 

 

 

Mrub_1485 

Mrub_1484 

Mrub_1483 

Mrub_1482 

Mrub_1481 

Mrub_1480 

 

 

 

Mrub_3020 could be orthologous to E. coli b2761 because both genes are predicted to encode 

the Cas 3 protein of the CRISPR/Cas system. But, the amino acid sequence of the translated            

mrub_3020 gene (Figure 8 A) is different from that of E. coli b2761 (Figure 6). Mrub_1489 

(predicted as a metal dependent phosphohydrolase) might be a paralog to mrub_3020, which 

may have diverged in sequence and function over evolutionary time since it would no longer be 

under the same functional constraints as mrub_3020: (Figure 8 B). 
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A 

>646674485 YP_003508784 CRISPR-associated helicase, Cas3 family [Meiothermus ruber DSM 1279 

chromosome: NC_013946] 

MSLSETARALWAKSDRGREQGAWHPLIAHLLDVAACAEAILEREPPKTLELYAHDLSLEPQQAKAWVCAL

AGLHDIGKASPAFQQKWPEGKERLWATGLTWSSDPTPPPHDLSHSIISEVVLPELLEARGWKYRAAQNVA

AAVGEHHGFRATRGDLDKATTREKGNANWDEVRRELFEAVLEVLGVGEAPKVKLYGGAAFERLAGLTSF

ADWIGSSLDFHPLGDDLAGYYREAKARAAQKLDGIGWFQRKTLMPEPQSLEEVFAYLGSPEAPFRARPLQ

AAIERLLEGVDCPALLLVEAPMGEGKTEAAFYAHLRLQAANGHRGMYVALPTQATGNLMFERAKAFLDR

WGQSRKLDLQLLHGASELVEAYQEIRVRPNSPEEREEGVEAQVWFSHRKRGLLSEYAVGTVDQALLGILPT

KHQFVRLWGLGNRVVVLDEVHAYDTYTSGLIEMLVRWLRALDSSVVLMSATLPRAKRENLLRAFGAEKI

TEDKPYPRITRVVKDNPMPVVETFEACKQLTLQLRALPLDLEAIAEQALEQARRGGCVACIVNTVQRAQEL

YRALAGNSDGVEVYLFHARYPLEERLNREQLVLAKFGKQGQRPKRAILVATQVVEQSLDLDFDVMFTDLA

PVDLVLQRAGRLHRHARSAEERHSHTEPVLWVAGLECEGVPDFGTAERIYERYVLLRSWLALRNRTRIGLP

GDIDRLVQEVYSDMPQGPSEAWKRALEEAQARMEKRDARDQDEAFYAPFGDPDETGWLEPRDFTRLPDD

EPNPDDDPSLLKTRKGPPSATVVLLHRVGGQLCLDAGGKEGVSLASQLELAQARRIFARSVKLSRYELVQN

NLEALEAHRKAHDLPTKPWSETPLLAHAHPVVLEGGCAVLGELVLELHPELGVVYGSAL 

 

B 

>646672954 YP_003507271 metal dependent phosphohydrolase [Meiothermus ruber DSM 1279 chromosome: 

NC_013946] 

MEATYHQNKAHRLLRLLELLEQKAWRPHELRRELGLGERAIFDYLLEAQALAERLGLEFRHDRLRGL 

YWVEVRERLSLTETVVAHAALRMLAHHAPGSNKAYQESLRKLARSLPEPLRSIALRSTEALNQRPPSL 

SGANLETLTQGWLNQQVVAFEYRLPQARVIRVELETYFIEVSRANMAVYVIGKDRLYGRGLHYLENL 

KTYKLERIQRPRLLDETYTIPDDFDPSQYLSSAWGIVRSEPPMRVRLRFNPEASERIREGGYPNLQILEQ 

LEGGSTLVQITVGTDTEGFPLELLPWIQSWGPRVEVLEPESLRQAWLAEARAVLEQYGQPGLAFRTYW 

AHTHPNPARWQPLREHLHQVAERAAAKARPFGEEENARLAGRLHDLGKYGDLFQRRLEGREKGLDH 

WSAGAHLALFEYRQPAVALAVQGHHIGLQSGARESLMEMKLREDGKGVPPELRLSETDLEVLKARL 

QKDGLELPPPSQTRISPPAGAAAMLDTRMLFSALVDADFLDTEAHIKGPEARPAPPELRAREALERLEA 

HLAQLSQAGHIPQKTLELRRVVAEAAASAAEQAASVFTLTAPTGLGKTLAMLRFALRRAARDPRIRRI 

VVVLPYLSILDQTAKVYRELFADFGPHYILEDHSLAYRPLSRELSDEQDLQERERRLLSENWEAPIVLTT 

HVQLLESLHANRPGACRKLHNLAGSVLLFDEVQTLPTHLAVPTLKTLARLASQKYGAVVVFATATQPA 

FDTLHEQIQRGEPQGWQPVEMVPEPERLFAQSRRVELEWWLKNPIPWPHLATLLEAEPQVLAVLNLKR 

QAYALFQESQARNLEGLYHLSTALCPAHRRRVLEEVQRRLEQGQPCRLVATQVVEAGVELDFPAGYRA 

LGPLEAIAQTAGRINRHGLRPQGRLVVFLPQEEAYPDRAYGRAAALTRALQAEGPLTLEPTTFRRYYQSL 

YALQQVSDPAIEALIQTQNYTELARRYRIIESVAVNVVVPYNDEALALMQEARDHGISAAWIHRARPYT 

VPYFLPKDGPPPFLETVFLRYGRGEAPDWFLSADPALYDARLGFTPQDGASVGLVV 

Figure 8. FASTA formatted amino acid sequence of mrub_3020 (A) and mrub_1489 (B). The 

amino acid sequences include the appropriate locus tags for correct identification. The first 

amino acid and the last amino acid of the sequences denote the N-terminal and C-terminal, 

respectively.     
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GenBank® was used to collect some basic information for mrub_3020 and mrub_1489, whiles 

EcoCyc was used to collect the corresponding information for E. coli b2761. IMG/M was used to 

generate the chromosomal maps for the two systems that focuses on the chromosomal locations 

of the three genes. Mrub_3020 and E. coli b2761 proteins have helicase activity in the 

CRISPR/Cas system. But, the Cas 3 protein of the E. coli CRISPR/Cas system has an additional 

role: endonuclease activity. Mrub_1489 encodes a metal dependent phosphodydrolase whose 

name does not suggest a role in the CRISPR/Cas system. All the genes are found at different 

location of their respective chromosome. Neither genes have the same nucleotide sequences 

because their amino acid sequences appear different (figures 6 and 8). All three genes appear to 

be part of an operon system, but they are generally flanked by different genes. The only 

exception is that both E. coli b2761 and mrub_3020 genes are flanked by a Cas A protein 

encoding gene (Table 2).  

 

Table 2. Comparing basic information for the three genes: E. coli b2761 (using EcoCyc), 

mrub_3020 and mrub_1489 (using GenBank®, and IMG/M). 

 

Feature E. coli b2761 Mrub_3020 mrub_1489 

Gene product name CRISPR-associated 

helicase / 

endonuclease 

CRISPR-associated 

helicase 

Metal dependent 

Phosphohydrolase 

DNA coordinates 2884553 . . . 2887219 3060491. . . 3063190 1516312..1519548 

Nucleotide sequences Different 

Positioned adjacent to 

a cas operon 

Yes 

Upstream Gene from 

gene of interest 

(G.O.I) 

casA: CRISPR-

associated protein, 

Cse1 family 

 

mrub_3019 (cas A: 

CRISPR-associated 

protein, Cse1 family) 

 

mrub_1488 

(CRISPR-associated 

protein Cas5d, 

family) 

 

Downstream gene 

from G.O.I 

cysH: phospho 

adenylylsulfate 

reductate 

(thioredoxin) 

mrub_3021 

(Transcriptional 

regulator protein) 

mrub_1490 

(tetratricopeptide 

domain containing 

protein) 

 

 

IMG/M was used to analyze mrub_3020 and mrub_1489 to confirm their start position for 

translation. The image of the upstream region shows the predicted start codon for mrub_3020 

(Figure 9 A) and mrub_1489 (Figure 9 B). A putative Shine-Delgarno sequence is noted for 

mrub_3020, but not mrub_1489. The start position is marked by the Shine-Delgarno (SD) 

sequence, but there appeared to be two possible options for mrub_3020. Because a typical SD 

sequence is 8-13 bases from a start codon, the sequence closest to the ATG is the most likely one 

of the two. Regarding mrub_1489, it is not unexpected that a suitable SD region might not be 

identified for an M. ruber gene, as a consensus sequence for the M. ruber Shine-Delgarno 

sequence has not been determined (Scott, personal communication). It is more surprising when 

an SD is predicted. Regardless, there is no evidence to suggest that a wrong start codon has been 

called for either M. ruber gene. 
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Figure 9. The 5’ region of both mrub_3020 (A) and mrub_1489 (B) show only one likely start 

codon. The nucleotide sequence provided start at map position 3060491 for mrub_3020 and 

position 1516312 for mrub_1489. All the six reading frames (e.g. F1, F2, etc.) are translated into 

the single-letter amino acid abbreviations. Reading frame F1 starts translating 30 bases upstream 

of the start codon. The starting position of this protein is the methionine (M) above the start 

codon (marked by ATG in red) in F1. Other ATG codons are highlighted in yellow. Two 

potential Shine-Delgarno regions (aka the ribosome binding site) are identified (GGGATG and 

GGGAAG highlighted in blue) for mrub_3020, but none is identified for mrub_1489. The actual 

Shine-Delgarno (SD) region is 8-15 bases upstream of the start codon and there should be only 

one ATG codon in the same reading frame as the start codon.   

 

 

The NCBI BLAST was used to create a multiple sequence alignment using the amino acid 

sequence for both M. ruber genes. The amino terminus of 15 likely orthologs is shown in Figure 

10.  Most of the amino acid sequences have methionine as their first amino acid for mrub_3020 

(Fig. 10A). Along with the information in Figure 9, this observation supports the hypothesis that 

the correct start codon has been identified. The interpretation is more difficult for mrub_1489 

(10B), however. The amino terminus of the chosen orthologs show greater amino acid variability 

and a clear alignment was difficult to make.  On further analysis of the downstream region from 

the initial M/methionine, however, there are no nearby M amino acids but the overall alignment 

improves. We conclude that the best start codon has likely been identified for mrub_3020. 
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Figure 10. Multiple amino acid sequence alignment analysis confirms the correct start codon has 

been identified for only mrub_3020 (A), but not for mrub_1489 (B). NCBI blast was performed 

using fifteen different amino acid sequences from species of the same Meiothermus genus. There 

is a good alignment for methionine (the first amino acid) and other amino acids when the same 

amino acids line up for all the fifteen different sequences. There is a good alignment for 

mrub_3020 (accession number: WP_013015262), but there is a poor alignment for mrub_1489 

(accession number: WP_013013753) because only about four methionine line up and four of the 

supposed amino acid sequences are made up of only dashed lines. Dashed lines could mean that 

no amino acids were encoded for by that region of the nucleotide sequence. 

 

Protein BLAST of the E. coli gene against the putative mrub_3020 was performed. The two 

amino acid sequences have some identical amino acids thus, a non-zero percent identities (33%) 

was obtained for the pairwise alignment. The recorded expect value (E-value) of the pairwise 

alignment (6 * 10-80) is lower than the cut-off value of 0.001. There are 320 chemically similar 

amino acids between the E. coli and M. ruber amino acid sequence. The alignment specifically 

started at amino acid 11 (Figure 11). 
 

A 

B 
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Figure 11. Protein BLAST pairwise alignment between E. coli gene and putative mrub_3020 

ortholog show that there is a significant similarity between the two sequences. 33% of the amino 

acids of both sequences are identical. 320 amino acids are either identical or come from 

chemically similar groups. These 320 amino acids are represented by the + signs (positives). The 

alignment begins at amino acid sequence 11.  

 

 

Three different bioinformatics tools were used to determine the cellular localization of each 

protein: inside or outside the cell.  Both E. coli and M.ruber are Gram negative Eubacteria. The 

TMHMM bioinformatics tool was used to predict the number of transmembrane alpha helices. 

All the three genes had no predicted transmembrane alpha helices (Figure 12). None of the 

proteins are predicted to be transmembrane alpha helices.  
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Figure 12. TMHMM posterior probabilities plots for E. coli b2761 (A), mrub_3020 (B), and 

mrub_1489 (C) predict no transmembrane alpha helices for the three proteins encoded by the 

respective gene. There is little to no probability of finding either proteins as an internal or 

transmembrane alpha helix.  

 

B 

A 

C 
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PRED analysis is performed using the amino acid sequence of E. coli and mrub_3020 Cas 3 

proteins, in addition to the sequence of the mrub_1489 encoded protein, to predict if the proteins 

could be beta-pleated sheets. The posterior probability plots (Figure 13) show that the two 

proteins are not hydrophobic transmembrane beta-pleated sheets that span the entire cell 

membrane. The corresponding amino acid sequences are polar and not non-polar. 

 

 

Figure 13. Posterior probability plots indicate that neither M. ruber putative Cas 3 protein (A), 

nor E. coli Cas 3 protein (B), nor M. ruber putative Metal dependent phosphohydrolyase (C) are 

hydrophobic, beta-pleated sheet that span the entire cell membranes. Only a small portion of the 

cell membrane is spanned by hydrophobic, beta pleated sheets.  

 

 

 

 

 

 

 

 

 

 

 

B 

A 

C 
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PSORT-B is the last bioinformatics tool that helps determine the cellular location of the proteins. 

The E. coli protein has equal chance of been in six different cellular location (all cellular 

locations had a score of 2.00). M.ruber putative Cas 3 protein had scores for all the different 

cellular locations. But, the highest of the six scores was the cytoplasmic score of 8.96. 

Mrub_1489 putative metal-dependent phosphohydrolase had different scores for all the different 

cellular locations.  

 

Table 3. PSORT-B predict that M.ruber Cas 3 is located in the cytoplasm, whiles it predict an 

unknown location for E. coli Cas 3 protein and mrub_1489 encoded protein.   

Cellular 

location 

Scores 

Mrub_3020 

 

 

E. coli b2761 Mrub_1489 

Cytoplasmic 

score 

8.96 2.00 5.48 

Cytoplasmic 

Membrane 

score 

0.51 2.00 0.10 

Cell wall score N/A (Gram negative) N/A (Gram negative) N/A (Gram negative) 

Periplasmic 

score 

0.26 2.00 0.48 

Outer 

Membrane 

score 

0.01 2.00 1.93 

Extracellular 

score 

0.26 2.00 2.01 

 

Four different bioinformatics tools were used to probe the functions of the Cas 3 protein and the 

metal-dependent phophohydrolase. CDD found one matching protein of E. coli – Helicase Cas 3 

(PRK09694) and a different matching protein for M.ruber - CRISPR/Cas system-associated 

endonuclease/helicase Cas3 [Defense mechanisms] (COG1203). But, mrub_1489 had multiple 

domains matches – a CRISPR/Cas system-associated helicase (COG1203); WYL domain 

(Pfam13280); and a CRISPR/Cas system-associated protein Cas3’’(cd09641). TIGRfam analysis 

of the different amino acid sequences identified the same two different proteins for E. coli b2761 

and mrub_3020 – cas3_core: CRISPR-associated helicase Cas3 (TIGR01587), and cas3_HD: 

CRISPR-associated endonuclease Cas (TIGR01596). The same hits were found for mrub_1489, 

together with six other proteins and domains – DEAD: DEAD/DEAH box helicase (PF00270); 

HDIG: uncharacterized domain HDIG (TIGR00277); HD: HD domain (PF01966);  ResIII: type 

III restriction enzyme, restriction subunits (PF04851); CRISPR-associated protein, TIGR0 

(TIGR03985); and Zot: zonula occludens toxin (Zot), (PF05707).    

 

The same PDB hit was pulled by the E. coli and M.ruber amino acid sequences that were 

analyzed – 4Q2C: entity contains Chain A. Crystal Structure of CRISPR-associated helicase Cas 

3 (Figure 14 A). A different protein hit (6C66: entity contains Chain G CRISPR RNA-guided 

surveillance complex) was obtained following the analysis of the mrub_1489 amino acid 



 

20 
 

sequence (Figure 14 B). Pfam analysis of the amino acid sequences for E. coli b2761 and 

mrub_3020 yielded the same protein domain – Cas3 C-terminal domain (PF01966). IMG/M 

gene search was performed using mrub_1489 as the GOI. Two Pfam numbers were retrieved 

(PF00270: DEAD domain, PF13280: WYL domain). The DEAD domain serves as a helicase 

that unwinds nucleic acids (Aubourg et al., 1999; de la Cruz et al.,1999). WYL domain is a 

negative regulator of the I-D CRISPR-Cas system in Synechocystis sp (Hein et al., 2013). All the 

reported findings are the top hits because they had high score numbers and E-values below the 

cut-off (0.001).  

 

.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The crystal structure of the CRISPR-associated helicase Cas 3 (A) and the CRISPR 

RNA-guided surveillance complex (B). The different colored regions represent all the unique 

domains that interact to form the quaternary structure of the Cas 3 protein. 

 

 

 

Protein BLASTp analysis of mrub_3020 as a query against the Meiothermus ruber DSM 1279 

genome identified mrub_1489 (Metal dependent phosphohydrolase) as a potential paralog. This 

probable paralog is the top hit with an E-value of 7*10-5. Pairwise alignment of mrub_3020 

amino acid sequence with that of mrub_1489 showed that 36% of the amino acids are identical 

(Figure 15). 

 

 

 

 

 

 

Figure 15. Pairwise alignment data of mrub_3020 as the query and mrub_1489 as the subject. 

The amino acids between the query and the subject (sbjct) are the conserved amino acids. The 

(+) between the two sequences represent similar amino acids. 36% of the amino acids are 

identical.  
 

B 
A 
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A phylogenetic tree was generated to show the evolutionary relationship between mrub_3020 

and mrub_1489. Only mrub_3020 shares a branch with other species like M. rufus and M. 

taiwanensis. Mrub_1489 appears distantly related to the other species because it shares no 

branch with other species.  

 

Figure 16. A phylogenetic tree showing the evolutionary relationship between mrub_3020 and 

mrub_1489. Multiple sequence alignment between the different nucleotide sequences were done 

using T-coffee. The tree was generated using the maximum method on Phylogeny.fr and the 

numbers above are the maximized probability of the genetic data used to generate the tree. 

mrub_3020 shares a branch with other species like M._rufus, but mrub_1489 shares no branch 

with other species. Meiothermus, Deinococcus, Thermus, and Truepera are of the same phylum: 

Deinococcus-Thermus (Carbone).  
 

 

Discussion.  

 

The CRISPR/Cas system that includes mrub_3020 is similar to the model system. In a nutshell, 

the collection of bioinformatics tools used in this project all suggest that the E. coli cas3 and the 

mrub_3020 are cas3 orthologs and they are involved in the CRISPR/Cas systems as helicases. 

This conclusion was made by comparing Meiothermus ruber and Escherichia coli using the 

Prokaryotic Defense system in KEGG (Table 1), as well as the outputs of a collection of other 

bioinformatics tools. Both systems have genes, identified by their locus tags, that encode 

orthologs of the Type I-E CRISPR-Cas system, which includes the Cascade complex, the 

universal cas1 and cas2, and the cas3 signature gene.  The CRISPR-Cas system in M. ruber is 

more complex, however. It appears to encode genes for additional CRISPR-Cas types.  
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There are compelling reasons to believe that mrub_3020 and mrub_1489 are paralogs. In support 

of this hypothesis is the observation that both genes are positioned adjacent to a likely Type I 

CRISPR-Cas operon, which is defined by its cas3 signature gene. Without mrub_1489, there 

would be no cas3 for its adjacent CRISPR-Cas system. A BLAST alignment between the two 

amino acid sequences produced an E-value well below the cut-off of 0.001.  CDD, Pfam 

TIGRfam and PDB outputs all suggest a function within the CRISPR immune response for both 

proteins, usually as a helicase, which is the known function of Cas3. Interestingly, although the 

two paralogs were matched to different protein 3-D structures (PDB database), they are both 

predicted to serve as helicases and to be involved in the CRISPR/Cas system. The overwhelming 

evidence suggests that both proteins are localized to the cytoplasm. 

 

The differences between these two proteins could be attributed to a duplication event that 

occurred in the distant past, followed by the acquisition of mutations within the mrub_1489 gene 

as its evolutionary constraints were reduced. For example, when compared to similar sequences 

drawn from GenBank, the amino terminus appears to be particularly variable (Figure 10B).  We 

propose that the system containing mrub_3020 is the original CRISPR-Cas system because of its 

similarity to the E. coli CRISPR-Cas system.  The phylogenetic tree generated to show the 

evolutionary relationship between mrub_3020 and mrub_1489 (Figure 16) is consistent with 

another tree generated using 6srRNA data of Deinococcus-Thermus phylum (Tindal et al., 

2010). In both trees, Meiothermus ruber or mrub_3020 is close to the same two species: M. rufus 

and M. taiwanensis. The key difference is that only the phylogenetic tree generated for this study 

includes the genus Deinococcus, which is in the same Deinococcus-Thermus phylum as 

Meiothermus. It is unlikely for a recent gene duplication to have resulted in the formation of the 

two paralogs. This is because a significant (based on the low E value), but smaller identity 

number of 36% was obtained following the NCBI BLAST alignment between mrub_3020 and 

mrub_1489 amino acid sequences (Figure 15). This lower identity number could imply that the 

gene duplication occurred well in the past. 
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