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INTRODUCTION

Thermophilic organisms live in hot environments that are inhospitable to many species,
little is known about how thermophilic bacteria withstand such conditions. Organisms that live in
extreme environments are difficult to grow in lab and their natural conditions make research
difficult as well (Brininger et al. 2018). One goal of the Meiothermus ruber genome analysis
project is to understand how thermophilic bacteria, such as the microbe M. ruber, survive in hot
conditions. The name Meiothermus ruber comes from “meio,” meaning less, “thermus,”
meaning hot, and “ruber,” meaning red. As a whole it means that M. ruber is an organism that
lives in a less hot environment and produces a red pigment. M ruber is typically found in natural
hot springs and artificial thermal environments, it can grow in temperatures ranging from 35-
70°C, and its optimum growth temperature is 60°C (Tindall et al. 2010). M. ruber must live in an
aerobic environment and is a Gram-negative, rod-shaped bacteria, Figure 1 shows an electron-
scanning microscope picture of M. ruber. M. ruber is an organism of interest because it lives in
hot environments and because its genome has been sequenced as part of the Genomic
Encyclopedia of Bacteria and Archaea (GEBA) Project (Tindall ef al. 2010). Previous research
has found that the M. ruber gene for ProC is orthologous to the E. coli gene for ProC, suggesting
that there may be other similarities between their genomes (Scott 2018).




Toward the goal of studying how M. ruber has adapted to higher temperatures, Dr. Scott
is studying proline biosynthesis, with an emphasis on the ProC enzyme, the last enzyme in the
biosynthetic pathway of proline. Proline is thought to play a role in stress-management in
organisms in harsh environments and understanding its biosynthesis may help in understanding
the stress-management of other thermophilic organisms (Scott 2018). The M. ruber genome
analysis project uses Escherichia coli as a model organism due to the well-studied nature of its
metabolic pathways and the abundance of data available on the organism. By inserting the M.
ruber proC gene into E. coli, the goal of the project was to show the orthologous nature of the M.
ruber and E. coli proC genes.

Another goal of the M. ruber genome analysis project is to predict how M. ruber
performs its many bioloigcal processes and synthesizes its many cellular components. In this
paper, we present evidence that M. ruber has the CRISPR-Cas system. CRISPR stands for
Clustered Regularly Interspaced Palindromic Repeats, Cas is CRISPR-associated proteins. It is a
bacterial defense mechanism against bacteriophages and plasmid invasion that is similar to
adaptive immunity in mammals and is found in about 50% of bacteria and 90% of archaea
(Wright, Nunez, and Doudna 2016). The CRISPR array component of the CRISPR-Cas system
includes a leader sequence followed by repeat sequences separated by spacers that are derived
from foreign DNA acquired in previous infections. There are three stages of the CRISPR-Cas
defense system: spacer acquisition, CRISPR RNA (crRNA) synthesis, and interference (Jiang
and Doudna 2016; Wright ef al. 2016; Darmon and Leach 2014). Figure 2 Panel A shows a
visual representation of these steps. Spacer acquisition involves the identification of foreign
DNA and processing it to be inserted in the CRISPR array. New spacers are generally inserted
after the leader sequence and a repeat sequence is copied with each spacer acquisition to separate
individual spacers. Synthesis of crRNA is the transcription of the CRISPR array and subsequent
RNA processing. Mature crRNA consists of one spacer sequence and part or all of repeat
sequences on either side of the spacer. Marture crRNA associates with CRISPR-effector
complexes, which are composed of Cas proteins, and guides it to foreign DNA. Foreign DNA
that is complementary to the crRNA is destroyed, completing CRISPR-Cas defense (Jiang and
Doudna 2016; Wright et al. 2016; Darmon and Leach 2014).

There are six types of CRISPR-Cas system, types I - III are the best studied mechanisms
while types IV - VI have just recently been discovered. Figure 2 Panel B shows each type and
their signature protein or effector complex that carries out the actual degradation of foreign
DNA. Type I is distinguished by its Cas3 protein, Type II its Cas9 protein, Type III its Cas10
protein. The hallmark of Type IV is Csfl, of Type V is a Cas9-like protein, and of Type VI is
C2c2. Types I, 111, and IV are considered Class 1 CRISPR-Cas mechanisms as their hallmark
effector complex has multiple subunits, the other types are Class 2 because they have a single
hallmark protein with multiple domains (Wright et al. 2016).
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Figure 2. Overview of the CRISPR-Cas system and illustration of the genetic differences
between each type of CRISPR-Cas system. Panel A shows the three steps of the CRISPR-Cas
defense system: acquisition of spacers, crRNA synthesis, and interference and degradation of
foreign DNA. Diamonds with R signify repeat seqeunces. Rectangles with S# indicate spacers,
RO is the most recently added spacer. Panel B shows the various genes that are hallmarks of
each type of CRISPR-Cas defense system. Taken from Wright et al. (2016)



Type I CRISPR-Cas system are further divided into subtypes A-F. E. coli K12 has a Type
I-E CRISPR-Cas system which has been well-studied. Its CRISPR array has eight genes for Cas
proteins, Casl and Cas2 are involved in spacer acquisition, Cas3 is involved in the interference
and degradation of foreign DNA. The other proteins, CasA (Csel), CasB (Cse2), CasC (Cas7),
CasD (Cas5e), and CasE (Casb6e) associate to form a Cascade complex that works with crRNA to
find and initiate the destruction of invading DNA (Jiang and Doudna 2016). The CRISPR-Cas
system of M. ruber shows potentially remarkable similarities to that of E. coli K12, with a Type
1-E system. It also has genes for a Type II system and some that resemble a Type III system.

The focus of this research is Cas1, which is essential for spacer acquisition. Two Casl
dimers associate with and effectively “sandwich” a single Cas2 dimer, forming the Cas1-Cas2
complex (Nunez ef al.2014). How exactly this complex carries out spacer acquisition still
requires more research; however, studies have shown that Cas1 is more essential than Cas2.
When mutations are induced in the Cas2 active site, there is little to no change in spacer
acquisition. On the other hand, when mutations are induced in the Casl active site spacer
acquisition is effectively shut down almost completely (Nunez et al.2014).. Casl and Cas2 are
universal CRISPR-Cas proteins, and are found in each type of CRISPR-Cas system. What is
most interesting about the CRISPR-Cas system of M. ruber is that it has three separate genes for
Casl and Cas2. This begs the question of a paralogous relationship and what, if anything, is
different between the three versions.

Paralogs are related genes that arose through gene duplication events, resulting in
multiple copies of the same gene. According to Bratlie ef al. (2010), there are three things that
can happen when paralogous genes are kept: one duplicate may evolve a new function, the
multiple functions of the original gene may divide between paralogs, or both copies may retain
the original function. Paralogs allow for evolution in bacterial genomes, and observation of
which paralogs are conserved can indicate which functions are under important selection
pressure. Gevers et al. (2004) and Sanchez-Perez et al. (2008) found that the most conserved
paralogs are found in the functional domains of metabolism, transcription, and cellular defense
mechanisms. CRISPR-Cas is a cellular defense mechanism against foreign and invading DNA,
suggesting that the presence of multiple genes for a single protein in the CRISPR-Cas family is
significant.

There is some research into the role of paralogs in adapting to changing environments.
Sanchez-Perez et al. (2008) suggest the existence of “ecoparalogs” that are different copies of
the same protein but with varying functionalities in varying environments. In the halophile (salt-
loving) Salinibacter ruber there are multiple copies of the same transport protein that operate
best at varying salinities (Sanchez-Perez et al. 2008). Proteins that are found near the cell surface
or are involved in DNA binding were found to have greater numbers of paralogs, suggesting that
the environment does play a role in the development of ecoparalogs. Sanchez-Perez ef al. (2008)
predicted that other prokaryotes likely to have ecoparalogs would include other halophilic
species and thermophilic species. Through analysis of the three copies of the Casl gene in M.



ruber, I intend to investigate the relationship between each gene and determine if they are true
paralogs with at least 30% similarity over 60% of their sequence.

METHODS

In order to learn more about the CRISPR-Cas system in the model organism, E. coli K12
MG1655, I used EcoCyc (Kesler ef al. 2013), an online database dedicated to E. coli K12
MG1655. It contains information on the genome, metabolic processes, and more of E. coli K12
MG1655. I specifically focused on the Casl protein and cas/ gene and collected data regarding
its structure and function. I then used the KEGG database (Kanehisa et al. 2019) and the IMG/M
database (Markowitz et al. 2012) to collect information on whether CRISPR-Cas systems are
present in M. ruber and how they are structured. I compared the CRISPR-Cas systems in E. coli
and in M. ruber and chose the M. ruber Casl genes mrub_ 3013, mrub_ 1477, and mrub 0224 for
this project.

The IMG/M database and NCBI Blast Multiple Sequence Alignment tool (Madden 2002)
were used to confirm the start codon of each M. ruber gene.The NCBI Protein BLAST tool was
used to compare each M. ruber protein to E. coli b2755 and produce pairwise alignments of the
amino acid sequences. To predict the cellular localization and protein structure of each M. ruber
protein the bioinformatics tool TMHMM was used to predict the presence of alpha-helices and
the bioinformatics tool PRED (Bagos et al. 2004) was used to predict the presence of membrane-
embedded beta-barrels. PSort-B (Yu ef al. 2010) was also used to predict the cellular localization
of each M. ruber protein.

Structural data on each protein was collected using NCBI Protein BLAST and the
TIGRFAM (Haft et al. 2001), PFAM (Finn et al. 2016), and PDB databases (Berman et al.
2000). The NCBI Protein Blast tool was used to identify conserved domains in each protein.
TIGRFAM, PFAM, and PDB were used to find proteins with similar sequences and domains to
the M. ruber protein. Using the IMG/M database, the possibility of each gene being in an operon
was analyzed. Finally, the website phylogeny.fr was used to evaluate the evolutionary
relationships between each M. ruber gene. All of these tools were used to determine if
mrub 3013, mrub_ 1477, and mrub_0224 are paralogous genes.

RESULTS

Initial research into the b2755 cas! gene in E. coli found that cas! is part of a CRISPR-
Cas Type I-E operon. Casl is localized to the cytoplasm and is 305 amino acids long, cas/ is 918
base pairs long. As part of the operon, it is preceded by casE and followed by cas2, all proteins
are involved in the CRISPR-Cas defense system. Figure 3 shows the E. coli K12 MG1655
CRISPR-Cas operon. There are three possible promoters leading to three transcription units, cas/
is included in two of the three transcription units, though one is unconfirmed. In E. coli there is a
single casl gene, b2755. In M. ruber there are three genes for Casl, mrub 3013, mrub 1477,
and mrub_0224.
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Figure 3. CRISPR-Cas Type I-E operon found in Escherichia coli K12 MG1655. The gene of interest is b2755,
which codes for Casl, a CRISPR-associated endonuclease. The cas! gene is colored dark purple, the other genes in
the operon are a light purple, and the arrows indicate transcription promoters. The green boxes are activators and the
red boxes are inhibitors of transcription. Taken from EcoCyc https://ecocyc.org/gene?orgid=ECOLI&id=G7425.

All three M. ruber genes are categorized as the CRISPR-associated Cas1 protein. Figure
4 shows the KEGG output for the M. ruber CRISPR-Cas system. The map location of
mrub 3013 is 3053978-3054940 bp and its protein is 320 amino acids long. The mrub_1477
gene is located at 1504008-1505027 bp and is 339 amino acids long. Finally, the mrub_ 0224
gene is at 197591-198562 bp and is a 323 amino acid long protein. Each M. ruber protein
sequence was compared with the E. coli Cas1 amino acid sequence using the NCBI Protein Blast
tool. Figure 5 shows the pairwise alignments of each comparison. Table 1 contains the E-values
and bit scores for each alignment. Mrub_3013 had the best alignment scores with a 40% identity
and an E-value of 2e-75, 114 of the 284 aligned amino acids were the same or chemically
similar. The next highest percent identity score was for mrub_0224, with an identity score of
34% and an E-value of 5e-10. For mrub 0224, 39 of the 116 aligned amino acids were the same
or chemically similar. Finally, mrub_1477 had a percent identity score of 29% and an E-value of
3e-7, 26 of the 89 aligned amino acids were the same or chemically similar.

¥ CRISPR-Cas system
¥ Universal Cas proteins
Mrub 0224 CRISPR-associated protein Casl
Mrub 1477 CRISPR-associated protein Casl
Mrub 3013 CRISPR-associated protein Casl
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Figure 4. KEGG output for the M. ruber CRISPR-Cas system. Mrub_3013, mrub_1477, and mrub_0224 are
all identified as CRISPR-associated Cas! proteins. Taken from KEGG database https://www.kegg.jp/kegg-

bin/get_htext.




A:mrub 3013 vs b2755

Range 1: 8 to 290 Graphics ¥ Next Match

Score Expect Method Identities Positives Gaps
222 bits(565) 2e-75 Compositional matrix adjust. 114/284(40%) 170/284(59%) 2/284(0%)

Query 6 LNPIP-LKDRVSMIFLQYGQIDVIDGAFVLIDKTGIRTHIPVGSVACIMLEPGTRVSHAA 64
L +P +D +S ++L++G+++ D A + G+ Ip ++ +ML PGT ++HAA
Sbjct 8 LOQELPKFRDGLSYLYLEHGRLEQQDQAVAYYSQEGV-VAIPAAALGVLMLGPGTSITHAA 66

Query 65 VRLAAQVGTLLVWVGEAGVRVYASGQPGGARSDKLLYQAKLALDEDLRLKVVRKMFELRF 124
+R A G + WVGE VR YASG S L+ Q + D + L+VV++++ LRF
Sbjct 67 IRQLANNGCSVFWVGEEMVRFYASGMGETRSSANLMRQVRAWADPEAHLEVVKRLYRLRF 126

Query 125 GEPAPARRSVEQLRGIEGSRVRATYALLAKQYGVTWNGRRYDPKDWEKGDTINQCISAAT 184
EP S+EQ+RG+EG RVR TYA +++ GV W GR Y +W D IN+ ISA
Sbjct 127 PEPLSPELSLEQIRGLEGVRVRETYARWSRETGVEWKGRNYQRGNWAAADPINRAISAGA 186

Query 185 SCLYGVTEAAILAAGYAPAIGFVHTGKPLSFVYDIADIIKFDTVVPKAFEIARRNPGEPD 244
+CLYG+ AAIL+AGY+PA+GF+HTGK LSFVYD+ADI K +T++P AF + + +
Sbjct 187 ACLYGLAHAAILSAGYSPALGFIHTGKQLSFVYDVADIYKAETLIPTAFRVVAESDVGVE 246

Query 245 REVRLACRDIFRSSKTLAKLIPLIEDVLAAGEIQPPAPPEDAQP 288

R VR R+ + KL +++ + + A E P + AP
Sbjct 247 RRVRHTLREQLKEVKLLERIVSDLHSLFDALETPDPYAADPAAP 290

B: mrub_1477 vs b2755

Range 1: 152 to 234 Graphics ¥ Next Match

Score Expect Method Identities Positives Gaps
37.0 bits(84) 3e-07 Compositional matrix adjust. 26/89(29%) 43/89(48%) 11/89(12%)

Query 129 PARRSVEQLRGIEGSRVRATYA----- LLAKQYGVTWNGRRYDPKDWEKGDTINQCISAA 183
P RS++++RG+EG A +A LL+ ++ ++GR P D +N +S
Sbjct 152 PQARSLDEVRGLEGGAASAYFAAFGDLLLSGEF--RFDGRNKRPPR----DPVNALLSFV 205

Query 184 TSCLYGVTEAAILAAGYAPAIGFVHTGKP 212

+ L AA+ G P GF+H +P
Sbjct 206 YALLTTQCTAALEGVGLDPQAGFLHALRP 234

C: mrub_0224 vs b2755

Range 1: 136 to 245 Graphics ¥ Next Match

Score Expect Method Identities Positives Gaps
45.4 bits(106) 5e-10 Compositional matrix adjust. 39/116(34%) 56/116(48%) 14/116(12%)

Query 126 EPAPARRSVEQLRGIEGSRVRATYALLA---KQYGVTWNGRRYDPKDWEKGDTINQCISA 182
E P RS+E LRGIEG+ RA +A L YG ++GR P D +N +S
Sbjct 136 EALPQARSLEALRGIEGNAARAYFAGLQAVLAPYG--FSGRNRRPPT----DAVNAALSY 189

Query 183 ATSCLYGVTEAAILAAGYAPAIGFVHT-GKPL-SFVYDIADIIK---FDTVVPKAF 233
L G A+ AG P +G +HT G+ + + +D+ + + D VV AF
Sbjct 190 GYMVLLGRVLLALGIAGLHPELGLLHTEGRRVPALAFDLMEEFRVSVVDAVVIAAF 245

Figure 5. NCBI Protein BLAST alignments of the M. ruber casl genes with E. coli b2755. In Panel A the
mrub_3013 gene was blasted against b2755 and had an E-value of 2e-75 and an identity score of 40%. In Panel B
the mrub_1477 gene was blasted against b2755 and had an E-value of 3e-07 and an identity score of 29%. In Panel
C the mrub_0224 gene was blasted against b2755 and had an E-value of 5e-10 and an identity score of 34%.



The start codon for each M. ruber casl was confirmed using both IMG/M and NCBI
Blast. Figure 6 shows the IMG/M upstream regions with potential start codons highlighted. The
IMG/M tool identified other potential start codons for mrub_3013 and mrub_ 1477, however with
the NCBI data they are not likely to be the actual start codon. There were no other start codons
predicted for mrub_0224. Figure 7 shows the NCBI Blast comparison with other, evolutionarily
similar organisms. There are no large overhangs in the NCBI Blast Multiple Sequence
Alignment for any of the proteins, and there are no other suitable start codons identified in the
IMG/M search, so the correct start codons were identified.
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197561 AGAGGTCIAGGTTCGAGCCCATTCCCCTlGTCGTGACCCTCCACCTCA(}.CGAGCAATCCTCC
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Figure 6. The IMG/M upstream regions and potential start codons. Potential start codons are highlighted in yellow,
the start codon typically used for translation is in red font. Panel A shows the upstream region for mrub 3013, there
is a potential start codon but it would shift the reading frame. Panel B shows the upstream region for mrub_1477,
there are two potential start codons upstream. Panel C shows the upstream region for mrub_0224, there are no other
potential start codons.



A: mrub_3013 start codon compared with similar species

@wp_013015255 1 MK- - YETRNLQELPKFRDGLSYLYLEHGRLEQQDQAVAYYSQEGVVAIPAAALGVLMLGPGTSITHAAIRQLA 71
@ wr_063843447 1 MK~ - YETRNLQELPKFRDGLSYLYLEHGRLEQQDQAVAYYSQEGVVAIPAAALGVLMLGPGTSITHAAIRQLA 71
@wp_119361698 1 MR- - YETRNLQELPKFRDGLSYLYLEHGRLEQQDQAVACYSQEGVVMIPAAALGVLMLGPGTSITHAAIRQLA 71
@ ADH63133 1 MAE[7]IP[7]YETRNLQELPKFRDGLSYIYLEHGRIEQQDQAVAYYSQEGVVSIPAAALGVLLLGPGTAITHAAIRQLA 88
RIHB89453 1 MAE[7]IP[7]YETRNLQELPKFRDGLSYIYLEHGRIEQQDQAVAYYGPDGAVMIPAAALGVLLLGPGTVVTHAAMRQLA 88
@wp_119342490 1 MK- - YETRNLQELPKFRDGLSYIYLEHGRLEQQDQAVAYYSQEGVVAIPAAALGVLLLGPGTSITHAAIRQLA 71
WP_119360210 1 MK- - YETRNLQELPKFRDGLSYLYLEHGRLEQQDQAVAFYTQEGVISIPAAALGVLLLGPGTAVTHAAIRQLA 71
@wp_018466931 1 MK- - YETRNLQELPKFRDGLSYLYLEHGRLEQQDQAVAFYTQEGVISIPAAALGVLLLGPGTAVTHAAIRQLA 71
@wp_051195844 1 MK- - YETRNLQELPKFRDGLSYLYLEHGRIEQQDQAVAYYSQDGVVAIPAAALGVLMLGPGTSITHAAIRQLA 71
@ wp_105317436 1 MPP VP -~PARNLKELPKFRDGLSYLYVEHAFLEQEAQGIGVYDREGLTLVPVAALGVLFLGPGTRITHAAIRALA 73
@ wp_053768182 1 MPP vp —SARNLKELPKFRDGLSYLYVEHAVVEREAGGIGIYDQEGLTLAPVAGLGVLFLGPGTRITHAAIRLLA 73
@wr_018111808 1 MPP VP ~NTRNLKELPKFRDGLSYLYVEHAFIEQEAQGIGIYTQEGLTLVPVAALGVLFLGPGTRITHAAIRALA 73
@wp_015717142 1 MPP vp —SARNLKELPKFRDGLTYLYVEHAFIEQEAQGIGIYDQQGLTLVPVAALGVLFLGPGTRITHAAIRTLA 73
@wp_114312722 1 MPP VP —~SARNLKELPKFRDGLSYLYVEHAFIEQEAQGIGIYDQEGLTLVPVAALGVLFLGPGTRITHAAIRALA 73
WP_011229111 1 MPP Vs —-SARNLKELPKFRDGLSYLYVEHAVVEREAGGIGIYDQEGLTLAPVAGLGVLFLGPGTRITHAAVRLLA 73

B: mrub_1477 start codon compared with similar species

ADD28239 1 MNSEVLNTLYIQTQGVYLRLEGDTLRIEHEDVT-LRNVPLHHLGGLALFGNVLVSPYLLHRCAQDGLEVTWFSESGRFQG 79
AWRB86722 MNSEVLNTLYIQTQGVYLRLEGDTLRIEHEDVT-LRNVPLHHLGGLALFGNVLVSPYLLHRCAQEGLEVTWFSESGRFQG 79
WP_013159698 MTTELLNTLYIQTQGVYLRLESDTLRIQHEDVT-LRHVPLHHLGGLALFGNVLVSPFLLHRCAEDGLEVTWFSESGRFQG 79
WP_119358226 MTGELLNTLYVQTQGVYLRLEGDTLRIQHEDVT-LRNVPLHHLGGVAVFGNVLISPFLLHRCAEEGLEVAWFSESGRFQG 79
@ wp_119339591 MTSEILNTLYIQTQGVYLRLEGDTLRIQHENIT-LRNVPMHHLGGVAVFGNVLISPFLLQRCAEEGLEVSWFSESGRFFG 79
WP_018465593 MTSELLNTLYIQTQGVYLRLEGDTLRIQHEEVT-LRNVPLHHLGGVAAFGNVLISPFLLHRCAEEGLEVSWFTESGRFQG 79
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Figure 7. Comparison of start codons for each M. ruber gene with evolutionarily similar species. In each panel, the
top line is the M. ruber Casl amino acid sequence. Panel A is mrub_3013, though there are a few gaps, there are no
large overhangs and the gaps are found in many of the amino acid sequences, so the start codon appears to have
been correctly identified. Panel B is mrub 1477 and shows correct identification of the start codon. Panel C is
mrub_0224 and shows correct identification of the start codon.
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According to NCBI PubMed Databases, both M. ruber and E. coli are Gram-negative
bacteria. The TMHMM tool predicted zero membrane-embedded alpha-helices in b2755,
mrub 3013, mrub 1477, and mrub_0224. Figure 8 shows the transmembrane topology graphs
for each protein. Though there are two peaks for transmembrane regions for mrub 3013, the
probability of those regions is so low that they are not likely actually crossing a membrane.
Protein structure was also predicted and compared using PRED to predict the presence of
membrane-embedded beta-barrels. Figure 9 shows the posterior probability plots for b2755 and
each M. ruber gene. The graph for mrub 3013 is most similar to the one for b2755, and shows
that there may be a few beta barrels present in the protein. The posterior probability plots for
mrub_ 1477 and mrub_0224 do not show evidence of any beta-barrels in the proteins.
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Figure 8. Transmembrane topology graphs for E. coli b2755, M. ruber mrub_3013, mrub 1477, and mrub_0224.
Panel A shows no predicted transmembrane alpha-helices for b2755. Panel B shows two potential transmembrane
alpha-helices for mrub_3013, however the probabilities are so low that they are likely not actually transmembrane
domains. Panel C and D shows no predicted transmembrane alpha-helices for mrub 1477 and mrub_ 0224,

respectively.
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Figure 9. Posterior probability plots for prediction of membrane-embedded beta-barrels for each gene of interest.
Panel A is for E. coli b2755 and shows a few beta-barrels near the center of the amino acid sequence. Panel B shows
a few small peaks for M. ruber mrub_3013. Panel C and D show no beta-barrels predicted for mrub 1477 and
mrub_0224, respectively.

The PSort-B bioinformatics tool was used to predict the cellular localization of each
protein. E. coli b2755 is predicted to function in the cytoplasm, as is mrub_3013. The score for
mrub 3013 was 8.96 for cytoplasm which is significant for the PSort-B tool, all other scores
were too low to be probable areas of function for mrub_3013. E. coli b2755 also had a 8.96 score
for cytoplasmic localization. The proteins encoded by mrub 1477 and mrub_0224 were not
predicted to function anywhere by PSort-B, the data were inconclusive for each amino acid
sequence. However, mrub 1477 and mrub_0224 are likely localized to the cytoplasm as well due
to their predicted function and predicted protein structure.

The protein structures of b2755, mrub_ 3013, mrub 1477, and mrub 0224 were further
compared using various structural databases. By entering the amino acid sequences of each
protein into PFAM, TIGRFAM, and CDD, search hits were collected that were significantly
similar to each protein. Table 1 summarizes this data as well as the cellular localization data.
B2755, mrub 3013, mrub_ 1477, and mrub_0224 all pulled the COG group COG1518 from the
CDD database. COG1518 is identified as the CRISPR-Cas system-associated endonuclease



Casl. From the TIGRFAM database both b2755 and mrub_3013 pulled TIGR03638, of the name
casl ECOLI. This TIGRFAM grouping is labeled as the CRISPR-Cas system-associated
endonuclease Casl from the CRISPR subtype I-E. Mrub_1477 pulled TIGR0364, which is name
casl DVULG, and is identified as the CRISPR-associated endonuclease Casl of subtype I-C.
Finally, mrub_0224 pulled TIGR00287, which is named cas]1 and is further identified as
CRISPR-associated endonuclease Casl. Though they were different hits, each gene pulled a
CRISPR-associated endonuclease Casl from the CDD and TIGRFAM databases.Each gene
pulled the same hit from the PFAM database, PFAMO01867. PFAMO01867 is identified as a
CRISPR-associated protein Casl. To summarize, from all structural protein databases, each gene
pulled a hit that was associated with CRISPR-Cas associated protein Casl.

PDB was also used to pull proteins that were significantly similar to each query protein.
E. coli b2755 pulled 5VVK, which is the structure of the Cas1-Cas2 complex bound to a full site
mimic, the E-value for this hit was 1.28e-168 and it had a bit score of 540.497. Mrub 3013
pulled 3NKD, which is the structure of the CRISP-associated protein Casl, specifically from E.
coli K12. The E-value of this match was 3.54e-57 and it had a bit score of 220.32. Mrub 1477
pulled 4WJ0, a CRISPR-associated endonuclease Casl, with an E-value of 1.13e-25 and a bit
score of 115.546. The final query matched mrub 0224 with 4N06, also a CRISPR-associated
endonuclease Casl. This match had an E-value of 4.45e-15 and a bit score of 80.49. Figure 10
shows the alignments between each gene and its respective PDB database match.

Table 1. Summary of data from structural protein databases.

Tool E. coli b2755 mrub_3013 mrub_1477 mrub_0224
E. coli cas1 BLAST alignment E-value: 2e-75 E-value: 3e-07 E-value: 5e-10
Identities: Identities: 26/89 | Identities:
114/284 (40%) (29%) 39/116 (34%)
CDD COG1518 - COG1518 - COG1518 - COG1518 -
Cas1 Cas1 Cas1 Cas1
TIGRFAM TIGR03638 - TIGR03638 - TIGR03640 - TIGR00287 -
Cas1_ECOLI Cas1_ECOLI Cas1_DVULG Cas1
PFAM PFAMO01867 - PFAMO01867 - PFAMO01867 - PFAMO01867 -
CRISPR- CRISPR- CRISPR- CRISPR-
associated Cas1 | associated Cas1 | associated Cas1 | associated Cas1
PDB 5VVK: Cas1- 3NKD: Structure | 4WJ0: CRISPR- | 4N06: CRISPR-
Cas2 bound to of CRISP- associated associated
full site mimic associated endonuclease endonuclease
protein Cas1 Cas1 Cas1
from Escherichia
coli st. K-12
PSortB cytoplasm cytoplasm unknown unknown
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Figure 10. Amino acid sequence alignments of each gene and its top hit from the PDB database. Each gene pulled a
significant match with a CRISPR-associated endonuclease Cas] protein, even though they have different PDB
codes. Panel A shows the alignment of E. coli b2755 with S5VVK. Panel B shows the alignment of mrub 3013 and
3NKD. Panel C shows the alignment of mrub 1477 and 4WJO0. Panel D shows the alignment of mrub 0224 and
4N06.

IMG/M was again used to investigate the map of the chromosome surrounding each gene
and whether they are part of an operon. Figure 11 shows the chromosome maps for each gene of
interest and Figure 12 shows the comparison of the operon regions in similar species. To
determine if they are part of an operon the genes up and downstream from each gene were noted.
For all genes, the gene directly downstream was cas2, the upstream gene was cse3 for b2755 and
mrub_3013. The gene upstream from mrub 1477 was cas4, and the gene upstream from
mrub_ 0224 was simply called “CRISPR-associated protein.” Mrub_3013 appears to be part of an
operon similar to that of E. coli b2755, it is in a highly conserved region when compared to
related species and has similar proteins and gene order to the E. coli Type I-E operon.

Mrub 1477 also seems to be part of an operon, though not one similar to the E. coli operon.
Mrub_ 0224 does not appear to be part of an operon as it is not in conserved area of the
chromosome when compared to evolutionarily similar species’ chromosome maps.
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Figure 11. Chromosome maps of each gene of interest. The cas/ gene in each panel is marked with a red arrow.
Panel A is the chromosome map for E. coli b2755, Panel B is the chromosome map for mrub_3013, Panel C is the
chromosome map for mrub 1477, and Panel D is the chromosome map for mrub_0224. Directly downstream from
all casl genes is the cas2 gene. For mrub_3013 and b2755, the upstream gene is cse3. For mrub_1477 the upstream
gene is cas4, and the gene upstream of mrub_0224 is called “CRISPR-associated protein.” The genes appear to be in
operons of varying structure.
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Figure 12. Comparison of
operon structures in mrub_ 3013,
mrub 1477, and mrub 0224,
respectively, with evolutionarily
similar species. Panel A shows
relatively strong conservation of
the operon structure that

mrub 3013 cas/ is part of with a
lot of rearrangement surrounding
the operon structure, supporting
its role in an operon. Panel B
shows some conservation of the
operon structure that mrub_1477
casl is part of with a lot of
rearrangement surrounding the
operon structure, partially
supporting its place in an operon.
Panel C shows weak
conservation of the operon
structure that mrub 0224 cas/ is
part of, there is a lot of
rearrangement around the gene
itself and in the surrounding
areas. Mrub 0224 is likely not
part of an operon.



Finally, the website phylogeny.fr was used to create phylogenetic trees of each M. ruber gene
and species with significantly similar sequences. A tree was made based on the NCBI Protein
Blast results of similar species, the amino acid sequences of each species’ protein was entered
and the tree was created based on similarity to show an estimate of the evolutionary relationships
between each gene. Figure 13 shows these phylogenetic trees.
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Figure 13. Phylogenetic
trees constructed using
evolutionarily similar
protein sequences. Panel A
was constructed using
NCBI Protein Blast
matches for mrub_3013.
Panel B was constructed
using NCBI Protein Blast
matches for mrub_1477.
Panel C was constructed
using NCBI Protein Blast
matches for mrub_0224.
Across all of the
phylogenies it is clear that
mrub 3013 is on a separate
evolutionary branch from
mrub_1477 and
mrub_0224, who are more
similar to each other than
they are to mrub_3013.



DISCUSSION

The above results support the orthologous nature of E. coli b2755 and M. ruber
mrub_ 3013 and raise more questions than answers about the paralogous nature of mrub 3013,
mrub 1477, and mrub_0224. Mrub 3013 is most similar to b2755 and the evidence supports that
it is part of a Type I-E CRISPR-Cas operon similar to the one found in E. coli. M. ruber also
appears to have Type I-C operon, as evidenced by the similarity between mrub 1477 and other
Type I-C Casl proteins. While it is clear that each gene codes for CRISPR-associated
endonuclease Casl, the relationship between the genes is unclear. The phylogenies show that
there is more similarity between mrub_0224 and mrub_1477, but both are significantly different
than mrub_3013. This suggests that if they are paralogs, they either arose through horizontal
gene transfer or through gene duplication long enough ago to allow for such divergence.

Future research should investigate the levels of each protein in M. ruber to determine
which system is most active. Another direction is to replace the E. coli casl gene with one from
M. ruber to see if is still effective and carries out its function. Further research should also be
done into the roles of each cas/ gene in M. ruber, to see if they are paralogs or have some other
relationship and how each one evolved to what they are today.

CONCLUSION

Mrub 3013 in Meiothermus ruber is an orthologous gene to b2755 in Escherichia coli,
and it is potentially paralogous to mrub_1477 and mrub_0224. Using structural protein
databases, it is clear that each gene is Casl and plays a role in the CRISPR-Cas defense system,
but what these roles are exactly is unclear for mrub 1477 and mrub_0224. Mrub 1477 and
mrub_ 0224 are more evolutionarily similar to each other than they are to mrub 3013, and may
have been the result of horizontal gene transfer or gene duplication, the results are not clear in
this respect. Future research should investigate further the relationship between each gene and
their roles in Meiothermus ruber.
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