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Inspiration

● What are the last two digits of 7^7^...^7 where 
there are 7 7’s

● 7^7^7 already has over 600,000 digits
● Using Wolfram Alpha, we noticed something 

interesting
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Motivation

● 7^7 ≡ 7^7^7 ≡ 7^7^...^7 mod 100
● The last 2 digits of every tower of sevens, 

except the first one, are the same
● When does this convergent behavior occur?
● Conjecture: For every a ∈ Zn there is a tower of 

a’s that will be congruent to every subsequent 
tower mod n
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Definition of Tetration

● The most known operations for the integers can 
be defined recursively.

● (1) Addition 5+3 = 8
● (2) Multiplication 5*3 = 5+5+5 = 15
● (3) Exponentiation 5^3 = 5*5*5 = 125
● (4) Tetration 5↑3 = 5^5^5 ≈ 1.9*10^2184
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● Given a,b,c ∈ R, we know: 
● a^b = a^c ⇔ b = c
● Using this intuition, we can conjecture:
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Modular Exponents

● Given a,b,c ∈ R, we know: 
● a^b = a^c ⇔ b = c
● Using this intuition, we can conjecture:
● a^b ≡ a^c mod n ⇔ b ≡ c mod n
● Consider 2 ∈ Z3 and notice 1 ≡ 4 mod 3
● 2^1 ≡ 2^4 mod 3
● 2 ≡ 16 mod 3
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Modular Exponents: This Time It’s 
Personal

● a ∈ Zn a unit 
● ⇒ a^b ≡ a^c mod n ⇔ b ≡ c mod |a|
● We want to generalize beyond the units, and all 

we need to do is generalize |a|
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Cyclic elements

● An element a ∈ Zn is cyclic means that there is 
an integer k such that a^k ≡ a mod n.

● a a unit is sufficient to say a cyclic, but it is not 
necessary.

● Consider 2 ∈ Z10:
● 2^5 = 32 ≡ 2 mod 10
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Properties of Cyclic Elements

● Form a group under multiplication mod n
● Contain an element a^(k-1) that acts as a 

multiplicative identity.
● Suppose a ∈ Zn cyclic
● a^k ≡ a mod n
● a^(k-1)*a^j
● ≡ a^(j)
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Non-Cyclic elements

● An element that is not cyclic is said to be 
non-cyclic

● That is to say for a ∈ Zn there is no power of a 
greater than 1 that is congruent to a mod n.

● Consider 2 ∈ Z20:
● 2^5 ≡ 12 mod 20



Non-Cyclic elements

● An element that is not cyclic is said to be 
non-cyclic

● That is to say for a ∈ Zn there is no power of a 
greater than 1 that is congruent to a mod n.

● Consider 2 ∈ Z20:
● 2^5 ≡ 12 mod 20
● 2^6 ≡ 4 mod 20
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Non-Cyclic elements

● The powers of a non-cyclic element can be 
divided into 2 disjoint subsets

● The head is the set {a^k|~∃ j > 0: a^k ≡ a^(k+j) 
mod n}

● The cycle is the set {a^k | ∃ j > 0: a^k ≡ a^(k+j) 
mod n}
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Properties of Non-Cyclic Elements

● Will always enter into a cycle.
● Similar to cyclic elements, the cycle will form a 

multiplicative group
● The identity of this group will be a^w, where w is 

the size of the cycle.
● Suppose the powers of a have a cycle of size w
● a^w+k ≡ a^k for k greater than the size of the 

head of a
● a^w*a^k ≡ a^k mod n
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A Generalized Lemma

● Let |a| be the size of the cycle of a
● b,c greater than the size of the head of a 

implies, a^b ≡ a^c ⇔ b ≡ c mod |a|
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Proof:

● a^b ≡ a^c mod n.
● Suppose b,c larger than the head of a. b = 

k|a|+j, c = m|a|+p where j,p < |a|
● a^(k|a|+j) ≡ a^(m|a|+p) mod n
● a^k|a|*a^j ≡ a^m|a|*a^p mod n
● a^j ≡ a^m mod n
● Therefore j ≡ m mod |a|. b ≡ c mod n
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Proof:

● Suppose b ≡ c mod n. b,c larger than the size of 
the head of a.

● b = k|a| + j, c = m|a| + j
● a^b ≡ a^(k|a|+j)
● ≡ a^(k|a|)a^j
● ≡ a^j



Proof:

● Suppose b ≡ c mod n. b,c larger than the size of 
the head of a.

● b = k|a| + j, c = m|a| + j
● a^b ≡ a^(k|a|+j)
● ≡ a^(k|a|)a^j
● ≡ a^j
● ≡ a^(m|a|+j)
● ≡ a^c
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A Smaller Lemma

● Given n>1, for all a ∈ Zn |a| < n
● |a| ≤ n
● |a| = n ⇒ a^k = 0 ⇒ |a| = 1
● So the order of a is a monovariant.
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Putting these things together

● Conjecture: For all a ∈ Zn there is a tetration of 
a that is congruent to all subsequent tetrations 
mod n

● We must show there is a finite tower of a’s that 
will be congruent to every bigger tower of a’s

● Start with a guess
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Putting these things together

● a↑k ≡ a↑(k-1) mod n
● ⇔ a↑(k-1) ≡ a↑(k-2) mod |a ∈ Zn|
● ⇔ a↑(k-2) ≡ a↑(k-3) mod |a ∈ Z|a||
● And so on until...
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Case 1: Our guess was too small

● The power of a is not big enough to get us into 
the cycle of some modulus.

● We can increment our original guess until it is 
big enough to enter into the cycle.  
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equivalence is not true. 



Case 2: Our guess was too small

● We’ve gotten to a modulus where our modulo 
equivalence is not true.

● We can increment our guess, and try again. 
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Case 3: End Game

● We have enough numbers in the tower to work 
our way all the way down into mod 1.

● We will always reach mod 1 with a finite tower, 
because |a| is a monovariant.

● So we’ve shown that there is a tower that will 
be congruent to it’s successor.
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Finishing up

● Since we have enough in the tower to get down 
to mod 1, we can equate anything we’d like, 
including another tower

● Therefore, once we have one tower being 
congruent to it’s successor, every tower after 
that will be congruent.

● QED
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● 2^2 ≡ 2 mod 10
● Notice |2 ∈ Z10| = 4. {2,4,8,6}
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● 2^2 ≡ 2 mod 10
● 2 ≡ 1 mod 4 Case 1.
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Example

● What tetration of 2 is congruent to all 
subsequent tetrations of 2 mod 10?

● 2^2^2^2 ≡ 2^2^2 mod 10
● 2^2^2 ≡ 2^2 mod 4
● 2^2 ≡ 2 mod 1
● Winner! 



Example
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● 2^2^2 ≡ 6 mod 10 



Example

● What tetration of 2 is congruent to all 
subsequent tetrations of 2 mod 10?

● 2^2^2 ≡ 6 mod 10
● So the tetrations of 2 converge on 6 mod 10 



Elements of Z10

● 0 -> 0
● 1 -> 1
● 2 -> 6
● 3 -> 7
● 4 -> 6

● 5 -> 5
● 6 -> 6
● 7 -> 3
● 8 -> 6
● 9 -> 9



Thank you

To the ISMAA, 
To Dr. Andrew Sward and Dr. Tom Bengtson,

To Earl H. Beiling,
And to you, for being a lovely audience. 
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