Identifying Dietary and Migratory Patterns of Illinois Woolly Mammoth Populations Using Isotope Analysis of Carbon, Oxygen, and Strontium

Matthew Harrington
Augustana College, Rock Island Illinois

Chris Widga
East Tennessee State University

Al Wanamaker
Iowa State University

Doug Walker
University of Kansas

Follow this and additional works at: https://digitalcommons.augustana.edu/celebrationoflearning

Part of the Biogeochemistry Commons, Paleobiology Commons, and the Paleontology Commons

Augustana Digital Commons Citation

This Poster Presentation is brought to you for free and open access by Augustana Digital Commons. It has been accepted for inclusion in Celebration of Learning by an authorized administrator of Augustana Digital Commons. For more information, please contact digitalcommons@augustana.edu.
Identifying Dietary and Migratory Patterns of Illinois *Mammuthus primigenius* Populations Using Stable Isotope Analysis of Carbon, Oxygen, and Strontium

Matthew Harrington¹ (matthewharrington15@augustana.edu), Chris Widga² (widgac@etsu.edu), Al Wanamaker³, Doug Walker⁴

1) Augustana College, IL, 2) East Tennessee State University, 3) Iowa State University, 4) University of Kansas

Abstract

The extinct woolly mammoth (*Mammuthus primigenius*) ranged from Alaska to the Northeastern Seaboard throughout the Late Pleistocene (100-10 Ka). Although it is recognized that woolly mammoths coincided with and lived in a region heavily influenced by glacial ice sheets, little is known about their behavior with respect to activities like migration and dietary preferences in this environment. This study classifies and provides insight into the diet and mobility of Midwestern mammoths by analyzing stable isotopes of carbon, oxygen, and strontium preserved in the tooth enamel of these extinct elephants. A woolly mammoth tooth from Moline, IL, was bulk sampled and micromilled to extract the aforementioned isotopes from the base of the enamel. Dated to 16,410 ± 110 BP (20,085-19,530 calBP), measured δ13C (−12.6‰ to −11.1‰), and measured δ18O (−8.1‰, VPDB) values are less negative than should be expected. The ratios of 87Sr/86Sr isotopes retained in the tooth enamel of these extinct elephants is a strong indicator of climate conditions during the Late Pleistocene. The data reveals the climate and landscape during the terminal Pleistocene in western Illinois and how woolly mammoths responded to it.

Methods

Bulk Sampling
- 2mm Dremel bit was used to serially sample enamel perpendicular to the growth axis down the length of a plate at 6-7 mm intervals.
- Powdered enamel was chemically treated to remove impurities

Micromilling Sampling
- Controlled by a Newax 55G-3-axis motion controller using GalilTools on a PC
- 0.3mm Dremel bit was used to sample enamel at depth increments of 100µm until the dentin was reached
- Micromilled enamel was used to sample enamel perpendicular to the growth axis at 17mm intervals

Isotope Analysis
- δ13C and δ18O values were acquired at the Iowa State University Stable Isotope Lab on a ThermoFinnigan MAT Delta Plus XL mass spectrometer in continuous flow mode connected to a Gas Bench with a ConFlo IV autosampler
- 87Sr/86Sr values were acquired at the University of Kansas Isotope Geochemistry Laboratory measured on a Thermal Ionization Mass Spectrometer (TIMS), an automated VG sector, and a 6-collector system with a 10-sample turret

Conclusions

- V-405 most likely lived in the northerly-laten Pocket between the two ice lobes. The primary scenario assumes V-405 lived close to the ice sheets in the small south-eastern slivers of Figure 5.
- Secondary and more unlikely scenario assumes V-405 lived in the northern pocket between the two ice lobes. The secondary and more unlikely scenario assumes V-405 lived close to the ice sheets in the small south-eastern slivers of Figure 5.

References

Don Esker (Widga et al. 2017) Strontium isotope ratios reveal disparate geographic origins for Late Pleistocene mammoths from Missouri and Texas (USA) (Vertebrate Paleontology, Albuquerque, NM.)

Acknowledgements

Funding of this project was provided by the Augustana Geology Department and Augustana College, and the National Science Foundation (Grants 1601805 to Dr. Widga for his graduate and assistantship in his laboratory, and Dr. Widga and Dr. D. Cohen/AES to Dr. E. A. Reynolds, Alber, Prof. Jerry Ams, Dr. Jeff Stuhr, Susan Wolf, and Dr. J. L. Kampf) who also helped with the use of these grant laboratories. Without this support, this project would not have been possible.

1. Augustana College, IL
2. East Tennessee State University
3. Iowa State University
4. University of Kansas